COVID-19 and diabetes; Possible role of polymorphism and rise of telemedicine

Published:August 31, 2020DOI:https://doi.org/10.1016/j.pcd.2020.08.018

      Highlights

      • Epidemiological studies conclude diabetes to be a leading comorbidity of COVID-19.
      • ACE2 polymorphisms in host can influence SARS-CoV-2 susceptibility or resistance.
      • The in-silico data need to be corroborated with in-vivo results.
      • Telemedicine can bring a new change in diabetes care.

      Abstract

      Background

      Diabetes has been found to be one of the leading comorbidities associated with fatality in COVID-19 patients. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is facilitated by interaction with Angiotensin Converting Enzyme-2 (ACE2) and possible polymorphisms in ACE2 can be a determining factor in host-viral protein interaction. A significant shift of healthcare towards ‘Telemedicine’ is also on the rise. In this review, the possible effects of ACE2 polymorphisms on SARS-CoV-2 entry along with the escalation of ‘telemedicine’ is discussed.

      Method

      An expansive literature search using keywords: “COVID-19”, “SARS-CoV-2”, “diabetes”, “type 2 diabetes’’, “type 1 diabetes”, “ACE2”, “polymorphism”, “DPP4” and “telemedicine” was conducted on Pubmed and EMBASE till 7th August 2020.

      Result

      Possible polymorphisms in ACE2 gene can play a role in influencing the virus entry in host body. Telemedicine can bring a new revolution for medical sector.

      Conclusion

      COVID-19 severity is more heinous among diabetic population. So far, the in-silico studies involving human ACE2-viral Spike (S) interaction showed inconsistent predictions regarding some SNPs. But without actual in-vivo studies, a holistic understanding can’t be established.

      Abbreviations:

      COVID-19 (Corona virus disease 2019), SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), ACE2 (Angiotensin Converting Enzyme-2), DM (Diabetes Mellitus), SARS-CoV (Severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus), SARS (Severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), CFR (Case-fatality rate), T2D (Type 2 diabetes), S (Spike), RBD (Receptor-binding domain), ACE (Angiotensin-converting enzyme), ACEI (ACE inhibitor), ARB (Angiotensin receptor antagonists), SNP (Single nucleotide polymorphism), DPP4 (Dipeptidyl peptidase 4), CD26 (Cluster of differentiation 26), hDPP4 (Human receptordipeptidyl peptidase 4), GLP-1 (Glucagon like peptide 1), T1D (Type 1 diabetes), TEDDY (The Environmental Determinants of Diabetes in the Young), H1N1 (Influenza A), CORONADO (Coronavirus SARS-CoV2 and Diabetes Outcomes), ISPAD (International Society for Pediatric and Adolescent Diabetes), HbA1c (Glycated hemoglobin), DKA (Diabetes ketoacidosis), SDCC (Steno Diabetes Center Copenhagen)

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cui J.
        • Li F.
        • Shi Z.L.
        Origin and evolution of pathogenic coronaviruses.
        Nat. Rev. Microbiol. 2019; 17: 181-192https://doi.org/10.1038/s41579-018-0118-9
        • Su S.
        • Wong G.
        • Shi W.
        • Liu J.
        • Lai A.C.K.
        • Zhou J.
        • et al.
        Epidemiology, genetic recombination, and pathogenesis of coronaviruses.
        Trends Microbiol. 2016; 24 (doi:10.1016/j.tim.2016.03. 003.): 490-502
      1. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

        • Saeedi P.
        • Petersohn I.
        • Salpea P.
        • Malanda B.
        • Karuranga S.
        • Unwin N.
        • et al.
        Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.
        Diabetes Res. Clin. Pract. 2019; 157107843https://doi.org/10.1016/j.diabres.2019.107843
        • Sayed S.
        • Nabi A.H.M.N.
        Diabetes and genetics: a relationship between genetic risk alleles, clinical phenotypes and therapeutic approaches.
        Adv. Exp. Med. Biol. 2020; (10.1007/5584_2020_518. doi:10.1007/5584_2020_518)
        • Guan W.J.
        • Ni Z.Y.
        • Hu Y.
        • Liang W.H.
        • Ou C.Q.
        • He J.X.
        • et al.
        Clinical characteristics of coronavirus disease 2019 in China.
        N. Engl. J. Med. 2020; 382 (DOI: 10.1056/NEJMoa2002032. 3): 1708-1720
        • Onder G.
        • Rezza G.
        • Brusaferro S.
        Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy [published online ahead of print, 2020 Mar 23].
        JAMA. 2020; (10.1001/jama.2020.4683. doi:10.1001/jama.2020.4683)
        • Wu Z.
        • McGoogan J.M.
        Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the chinese center for disease control and prevention.
        JAMA. 2020; (Published online February 24, 2020. doi:10.1001/jama.2020.2648)
        • Bode B.
        • Garrett V.
        • Messler J.
        • McFarland R.
        • Crowe J.
        • Booth R.
        Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. [published online ahead of print, 2020 May 9].
        J. Diabetes Sci. Technol. 2020; (1932296820924469. doi:10.1177/1932296820924469)
        • Yan Y.
        • Yang Y.
        • Wang F.
        • Ren H.
        • Zhang S.
        • Shi X.
        • et al.
        Clinical characteristics and outcomes of patients with severe covid-19 with diabetes.
        BMJ Open Diabetes Res. Care. 2020; 8e001343https://doi.org/10.1136/bmjdrc-2020-001343
        • Andersen K.G.
        • Rambaut A.
        • Lipkin W.I.
        • Holmes E.C.
        • Garry R.F.
        The proximal origin of SARS-CoV-2.
        Nat. Med. 2020; https://doi.org/10.1038/s41591-0200820-9
        • Guan W.J.
        • Liang W.H.
        • Zhao Y.
        • Liang W.H.R.
        • Chen Z.S.
        • Li Y.M.
        • et al.
        Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis.
        Eur. Respir. J. 2020; ([Published online March 26, 2020]. doi:10.1183/13993003.00547-2020.)
        • Van-Laethem Y.
        • Cabaraux P.
        • Mat Q.
        • Huet K.
        • Plzak J.
        • Horoi M.
        • et al.
        Clinical and Epidemiological Characteristics of 1,420 European Patients with mild-to-moderate Coronavirus Disease 2019. [published online ahead of print, 2020 Apr 30].
        J. Intern. Med. 2020; (10.1111/joim.13089. doi:10.1111/joim.13089)
        • Nikpouraghdam M.
        • Farahani A.J.
        • Alishiri G.
        • Heydari S.
        • Ebrahimnia M.
        • Samadinia H.
        • et al.
        Epidemiological Characteristics of Coronavirus Disease 2019 (COVID-19) Patients in IRAN: a single Center Study. [published online ahead of print, 2020 Apr 21].
        J. Clin. Virol. 2020; 127104378https://doi.org/10.1016/j.jcv.2020.104378
        • Gold J.A.
        • Wong K.K.
        • Szablewski C.M.
        • Patel P.R.
        • Rossow J.
        • deSilva J.
        • et al.
        Characteristics and clinical outcomes of adult patients hospitalized with COVID-19- Georgia, March 2020.
        MMER Morb Mortal Wkly Rep. 2020; 69: 545-550https://doi.org/10.15585/mmwr.mm6918e1
        • Itelman E.
        • Wasserstrum Y.
        • Segev A.
        • Avaky C.
        • Negru L.
        • Cohen D.
        • et al.
        Clinical characterization of 162 COVID-19 patients in Israel: preliminary report from a large tertiary center.
        Isr. Med. Assoc. J. 2020; 22: 271-274
        • Barron E.
        • Bakhai C.
        • Kar P.
        • Weaver A.
        • Bradley D.
        • Ismail H.
        • et al.
        Type 1 and Type 2 Diabetes and COVID-19 Related Mortality in England: a Whole Population Study. NHS England.
        2020
        • Hoffmann M.
        • Kleine-Weber H.
        • Schroeder S.
        • Krüger N.
        • Herrler T.
        • Erichsen S.
        • et al.
        SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
        Cell. 2020; 181 (e8. https://doi.org/10.1016/j.cell.2020.02): 271-280
        • Walls A.C.
        • Park Y.J.
        • Tortorici M.A.
        • Wall A.
        • McGuire A.T.
        Veesler D Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.
        Cell. 2020; (10.1016/j.cell.2020.02.058 pii: S0092–8674(20)30262–2)
        • Liu F.
        • Long X.
        • Zhang B.
        • Zhang W.
        • Chen X.
        • Zhang Z.
        ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection [published online ahead of print, 2020 Apr 22].
        Clin. Gastroenterol. Hepatol. 2020; (S1542-3565(20)30537-1. doi:10.1016/j.cgh.2020.04.040)
        • Lukassen S.
        • Chua R.L.
        • Trefzer T.
        • Kahn N.C.
        • Schneider M.A.
        • Muley T.
        • et al.
        SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells.
        EMBO J. 2020; 39e105114https://doi.org/10.15252/embj.20105114
        • Zou X.
        • Chen K.
        • Zou J.
        • Han P.
        • Hao J.
        • Han Z.
        Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection.
        Front. Med. 2020; 14: 185-192https://doi.org/10.1007/s11684-020-0754-0
        • Muniyappa R.
        • Gubbi S.
        COVID-19 pandemic, coronaviruses, and diabetes mellitus.
        Am. J. Physiol. Endocrinol. Metab. 2020; 318: E736-E741https://doi.org/10.1152/ajpendo.00124
        • de Wit E.
        • van Doremalen N.
        • Falzarano D.
        • Munster V.J.
        SARS and MERS: recent insights into emerging coronaviruses.
        Nat. Rev. Microbiol. 2016; 14: 523-534https://doi.org/10.1038/nrmicro.2016.81
        • Yang X.
        • Yu Y.
        • Xu J.
        • Shu H.
        • Xia J.
        • Liu H.
        • et al.
        Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.
        Lancet Respir. Med. 2020; 8: 475-481https://doi.org/10.1016/S2213-2600(20)30079-5
        • Zhang J.J.
        • Dong X.
        • Cao Y.Y.
        • Yuan Y.D.
        • Yang Y.B.
        • Yan Y.Q.
        • et al.
        Clinical characteristics of 140 patients infected with SARS CoV-2 in Wuhan, China.[published online ahead of print, 2020 Feb 19].
        Allergy. 2020; (10.1111/all.14238. doi:10.1111/all.14238)
        • Palm N.W.
        • Medzhitov R.
        Not so fast: adaptive suppression of innate immunity.
        Nat. Med. 2007; 13: 1142-1144https://doi.org/10.1038/nm1007-1142b
        • Gao Y.
        • Li T.
        • Han M.
        • Li X.
        • Wu D.
        • Xu Y.
        • et al.
        Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. [published online ahead of print, 2020 Mar 17].
        J. Med. Virol. 2020; (10.1002/jmv.25770. doi:10.1002/jmv.25770)
        • Mehta P.
        • McAuley D.F.
        • Brown M.
        • Sanchez E.
        • Tattersall R.S.
        • Manson J.J.
        • et al.
        COVID-19: consider cytokine storm syndromes and immunosuppression.
        Lancet. 2020; 395: 1033-1034https://doi.org/10.1016/S0140-6736(20)30628-0
        • Wan S.
        • Yi Q.
        • Fan S.
        • Lv J.
        • Zhang X.
        • Guo L.
        • et al.
        Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) (Preprint).
        medRxiv. 2020; (2002.2010.20021832, 2020. doi:10.1101/2020.02.10. 20021832.))
        • Diao B.
        • Wang C.
        • Tan Y.
        • Chen X.
        • Liu Y.
        • Ning L.
        • et al.
        Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19.
        Front. Immunol. 2020; https://doi.org/10.3389/fimmu.2020.00827
        • Alexandraki K.
        • Piperi C.
        • Kalofoutis C.
        • Singh J.
        • Alaveras A.
        • Kalofoutis A.
        Inflammatory process in type 2 diabetes: the role of cytokines.
        Ann. N. Y. Acad. Sci. 2006; 1084: 89-117https://doi.org/10.1196/annals.1372.039
        • Rao S.
        • Lau A.
        • So H.-C.
        Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of 2019nCov: a Mendelian randomization analysis (Preprint).
        Diabetes Care. 2020; (May; dc200643.https://doi.org/10.2337/dc20-0643)
        • Fernandez C.
        • Rysä J.
        • Almgren P.
        • Nilsson J.
        • Engström G.
        • OrhoMelander M.
        • et al.
        Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality.
        J. Intern. Med. 2018; 284 (2018. doi:10.1111/joim.12783.): 377-387
        • Ribeiro-Oliveira Jr, A.
        • Nogueira A.I.
        • Pereira R.M.
        • Boas W.W.
        • Dos Santos R.A.
        • Simões e Silva A.C.
        The renin-angiotensin system and diabetes: an update.
        Vasc. Health Risk Manag. 2008; 4: 787-803
        • Nehme A.
        • Zouein F.A.
        • Zayeri Z.D.
        • Zibara K.
        An update on the tissue renin angiotensin system and its role in physiology and pathology.
        J. Cardiovasc. Dev. Dis. 2019; 6 (Published 2019 Mar 29. doi:10.3390/jcdd6020014): 14
        • Lelis D.F.
        • Freitas D.F.
        • Machado A.S.
        • Crespo T.S.
        • Santos S.
        Angiotensin-(1-7), Adipokines and inflammation.
        Metabolism. 2019; 95: 36-45https://doi.org/10.1016/j.metabol.2019.03.006
        • Cure E.
        • Cumhur Cure M.
        Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic [published online ahead of print, 2020 Apr 15].
        Diabetes Metab. Syndr. 2020; 14: 349-350https://doi.org/10.1016/j.dsx.2020.04.019
        • Cure E.
        • Cumhur Cure M.
        Comment on "Organ-protective effect of angiotensin converting enzyme 2 and its effect on the prognosis of COVID-19.
        J. Med. Virol. 2020; https://doi.org/10.1002/jmv.25848
        • Tipnis S.R.
        • Hooper N.M.
        • Hyde R.
        • Karran E.
        • Christie G.
        • Turner A.J.
        A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.
        J. Biol. Chem. 2000; 275 (33238e43)
        • Patel S.K.
        • Wai B.
        • Ord M.
        • MacIsaac R.J.
        • Grant S.
        • Velkoska E.
        • et al.
        Association of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes.
        Am. J. Hypertens. 2012; 25: 216-222https://doi.org/10.1038/ajh.2011.188
        • Liu C.
        • Li Y.
        • Guan T.
        • Lai Y.
        • Shen Y.
        • Zeyaweiding A.
        • et al.
        ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus.
        Cardiovasc. Diabetol. 2018; 17 (Published 2018 Sep 18. doi:10.1186/s12933-018-0771-3): 127
        • Pan Y.
        • Wang T.
        • Li Y.
        • Guan T.
        • Lai Y.
        • Shen Y.
        • et al.
        Association of ACE2 polymorphisms with susceptibility to essential hypertension and dyslipidemia in Xinjiang, China.
        Lipids Health Dis. 2018; 17: 241
        • Luo Y.
        • Liu C.
        • Guan T.
        • Li Y.
        • Lai Y.
        • Li F.
        • et al.
        Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang.
        Hypertens. Res. 2019; 42: 681-689
        • Chaoxin J.
        • Daili S.
        • Yanxin H.
        • Ruwei G.
        • Chenlong W.
        • Yaobin T.
        The influence of angiotensin-converting enzyme 2 gene polymorphisms on type 2 diabetes mellitus and coronary heart disease.
        Eur. Rev. Med. Pharmacol. Sci. 2013; 17: 2654-2659
        • Li F.
        • Li W.
        • Farzan M.
        • Harrison S.C.
        Structure of SARS coronavirus spike receptor-binding domain complexed with receptor.
        Science. 2005; 309: 1864-1868
        • Li W.
        • Zhang C.
        • Sui J.
        • Kuhn J.H.
        • Moore M.J.
        • Luo S.
        • et al.
        Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.
        EMBO J. 2005; 24: 1634-1643https://doi.org/10.1038/sj.emboj.7600640
        • Procko E.
        The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2.
        bioRxiv : the preprint server for biology. 2020; 2020https://doi.org/10.1101/2020.03.16.994236
        • Darbani B.
        The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues.
        Int. J. Environ. Res. Public Health. 2020; 17 (Published 2020 May 14. doi:10.3390/ijerph17103433): E3433
        • Hussain M.
        • Jabeen N.
        • Raza F.
        • Shabbir S.
        • Baig A.A.
        • Amanullah A.
        • Aziz B.
        Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein.
        J. Med. Virol. 2020; (10.1002/jmv.25832. Advance online publication. https://doi.org/10.1002/jmv.25832)
        • Othman H.
        • Bouslama Z.
        • Brandenburg J.T.
        • da Rocha J.
        • Hamdi Y.
        • Ghedira K.
        • et al.
        Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism [published online ahead of print, 2020 May 14].
        Biochem. Biophys. Res. Commun. 2020; (10.1016/j.bbrc.2020.05.028. doi:10.1016/j.bbrc.2020.05.028.)
        • Marmor M.
        • Hertzmark K.
        • Thomas S.M.
        • et al.
        Resistance to HIV infection.
        J. Urban Health. 2006; 83: 5-17https://doi.org/10.1007/s11524-005-9003-8
        • Oyugi J.O.
        • Vouriot F.C.M.
        • Alimonti J.
        • Wayne S.
        • Luo M.
        • Land A.M.
        • et al.
        A common CD4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers.
        J. Infect. Dis. 2009; 199: 1327-1334
        • Strollo R.
        • Pozzilli P.
        DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19? [published online ahead of print, 2020 Apr 26].
        Diabetes Metab. Res. Rev. 2020; (10.1002/dmrr.3330. doi:10.1002/dmrr.3330)
        • Raj V.
        • Mou H.
        • Smits S.
        • Dekkers D.H.
        • Müller M.A.
        • Dijkman R.
        • et al.
        Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.
        Nature. 2013; 495: 251-254https://doi.org/10.1038/nature12005
        • Iacobellis G.
        COVID-19 and diabetes: can DPP4 inhibition play a role?.
        Diabetes Res. Clin. Pract. 2020; 162108125https://doi.org/10.1016/j.diabres.2020.108125
        • Vankadari N.
        • Wilce J.A.
        Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26.
        Emerg. Microbes Infect. 2020; 9 (doi: 10.1080/22221751.2020.1739565. eCollection 2020): 601-604
        • Wang Q.
        • Qi J.
        • Yuan Y.
        • Xuan Y.
        • Han P.
        • Wan Y.
        • et al.
        Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26.
        Cell Host Microbe. 2014; 16: 328-337https://doi.org/10.1016/j.chom.2014.08.009
        • Kleine-Weber H.
        • Schroeder S.
        • Krüger N.
        • Prokscha A.
        • Naim H.Y.
        • Müller M.A.
        • et al.
        Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.
        Emerg. Microbes Infect. 2020; 9 (Published 2020 Jan 21. doi:10.1080/22221751.2020.1713705): 155-168
        • Atkinson M.A.
        • Eisenbarth G.S.
        • Michels A.W.
        Type 1 diabetes.
        Lancet. 2014; 383 (https://doi.org/10.1016/S0140-6736(13) 60591-60597): 69-82
        • Op de Beeck A
        • Eizirik D.L.
        Viral infections in type 1 diabetes mellitus–why the b cells?.
        Nat. Rev. Endocrinol. 2016; 12: 263-273https://doi.org/10.1038/nrendo.2016.30
        • Lönnrot M.
        • Lynch K.F.
        • Elding Larsson H.
        • Lernmark Å
        • Rewers M.J.
        • Törn C.
        • et al.
        Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study.
        Diabetologia. 2017; 60: 1931-1940https://doi.org/10.1007/s00125-017-4365-5
        • Ruiz P.L.D.
        • Tapia G.
        • Bakken I.J.
        • Håberg S.E.
        • Hungnes O.
        • Gulseth H.L.
        • et al.
        Pandemic influenza and subsequent risk of type 1 diabetes: a nationwide cohort study.
        Diabetologia. 2018; 61: 1996-2004https://doi.org/10.1007/s00125-018-4662-7
      2. Cariou B., Hadjadj S., Wargny M., Pichelin M., Al-Salameh A., Allix I. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. In press. Epub ahead of print. doi:10.1007/s00125-020- 05180-x.

      3. https://www.medscape.com/viewarticle/927567?nlid=134689_3044&src=WNL_ mdplsnews_200327_mscpedit_diab&uac=75759MY&spon=22&impID=2326416& faf=1.

        • Tatti P.
        • Tonolo G.
        • Zanfardino A.
        • Iafusco D.
        Is it fair to hope that patients with Type 1 Diabetes (autoimmune) may be spared by the infection of Covid-19?.
        Med. Hypotheses. 2020; (doi: 10.1016/j.mehy.2020.109795 [Epub ahead of print])109795
      4. Telemedicine-Opportunities and developments in member states [Internet].second ed. Geneva, Switzerland: WHO press; 2010 Available from:https://www.who.int/goe/publications/goe_telemedicine_2010.pd].

        • Ghosh A.
        • Gupta R.
        • Misra A.
        Telemedicine for diabetes care in India during COVID19 pandemic and national lockdown period: Guidelines for physicians [published online ahead of print, 2020 Apr 4].
        Diabetes Metab. Syndr. 2020; 14: 273-276https://doi.org/10.1016/j.dsx.2020.04.001
        • Zhai Y.K.
        • Zhu W.J.
        • Cai Y.L.
        • Sun D.X.
        • Zhao J.
        Clinical- and cost-effectiveness of telemedicine in type 2 diabetes mellitus: a systematic review and meta-analysis.
        Bull. Sch. Med. Md. 2014; 93 (https://doi.org/10.1097/ MD.0000000000000312): e312
        • Gopalan H.S.
        • Haque I.
        • Ahmad S.
        • Gaur A.
        • Misra A.
        Diabetes care at doorsteps": a customised mobile van for the prevention, screening, detection and management of diabetes in the urban underprivileged populations of Delhi.
        Diabete Metab. 2019; 13 (https://doi.org/10.1016/ j.dsx.2019.11.008. Epub 2019 Nov 20)3105e12
        • Bonora B.M.
        • Boscari F.
        • Avogaro A.
        • Bruttomesso D.
        • Fadini G.P.
        Glycaemic control among people with type 1 diabetes during lockdown for the SARS-CoV-2 Outbreak in Italy [published online ahead of print, 2020 may 11].
        Diabetes Ther. 2020; : 1-11https://doi.org/10.1007/s13300-020-00829-7
        • Fernández E.
        • Cortazar A.
        • Bellido V.
        Impact of covid-19 lockdown on glycemic control in patients with type 1 diabetes.
        Diabetes Res. Clin. Pract. Suppl. 2020; https://doi.org/10.1016/j.diabres.2020.108348
        • Peters A.L.
        • Garg S.
        The Silver Lining to COVID-19: Avoiding Diabetic Ketoacidosis Admissions with Telehealth [published online ahead of print, 2020 May 5].
        Diabetes Technol. Ther. 2020; (10.1089/dia.2020.0187. doi:10.1089/dia.2020.0187)
      5. Nørgaard K. Telemedicine Consultations and Diabetes Technology During COVID-19 [published online ahead of print, 2020 May 19]. J Diabetes Sci Technol. 2020;1932296820929378. doi:10.1177/1932296820929378.