Heart failure outcomes and glucagon-like peptide-1 receptor agonists: A systematic review of observational studies

Published:April 26, 2021DOI:https://doi.org/10.1016/j.pcd.2021.04.005

      Highlights

      • This review included 7 cohort studies and 3 nested case-control studies.
      • We found conflicting evidence for the reduction in HF risk and hospitalization.
      • We found no statistically significant increase in HF risk in GLP-1RA users.

      Abstract

      Aim/objective

      Recently, the glucagon-like peptide-1 receptor agonists (GLP-1RA) class showed a significant reduction in heart failure (HF) hospitalization in several meta-analyses of cardiovascular outcome trials (CVOTs). The objective of this systematic review is to summarize the real-world evidence regarding HF outcomes of GLP-1RAs.

      Methods

      We searched the PubMed and EMBASE databases for observational studies that investigated HF outcomes of GLP-1RAs.

      Results

      Our search yielded 10 observational studies. Of those, 7 were cohort studies, and 3 were nested case-control studies. The risk of HF was the outcome in four cohort studies. One study that compared exenatide and exenatide combined with insulin to insulin showed a reduction in HF risk in the exenatide and exenatide plus insulin groups (HR 0.34, 95% CI 0.22−0.52, p-value <0.001 and HR 0.40, 95% CI 0.32−0.50, p-value <0.001, respectively). The other three cohort studies did not show a statistically significant result. In the three cohort studies that investigated HF hospitalization as an outcome, two showed a lower rate of HF hospitalization [48 (16.7%) vs. 76 (28%), p-value <0.05 and HR 0.51, 95% CI 0.34−0.77, p = 0.002] in the GLP-1RA groups. Conversely, the remaining study showed a reduction of 14% in HF hospitalization in the dipeptidyl peptidase-4 inhibitors (DPP-4i) group compared to the GLP-1RA group (HR 0.86, 95% CI 0.83−0.90). In contrast to the cohort studies, the three nested case-control studies showed similar results of no association of GLP-1RA use and HF hospitalization with OR 0.67 (95% CI 0.32–1.42), HR 0.95 (95% CI 0.83–1.10), and OR 0.84 (95% CI 0.48–1.47), respectively.

      Conclusion

      The real-world evidence regarding the reduction in HF risk and hospitalization in GLP-1RA users is conflicting. Further well-designed, large multicenter, observational studies are needed to show clearer evidence.

      Abbreviations:

      HF (heart failure), GLP-1RA (glucagon like peptide-1 receptor agonist), CVD (cardiovascular disease), T2DM (type 2 diabetes mellitus), CVOT (cardiovascular outcome trial), MACE (major adverse cardiovascular events), DPP-4i (dipeptidyl peptidase-4 inhibitor), PRISMA (preferred reporting items for systematic reviews and meta-analyses), NOS (Newcastle-Ottawa quality assessment scale (NOS)), FDA (food and drug administration), SGLT-2i (sodium-glucose cotransporter-2 inhibitors)

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rao Kondapally Seshasai S.
        • Kaptoge S.
        • Thompson A.
        • et al.
        Diabetes mellitus, fasting glucose, and risk of cause-specific death centers for disease control and prevention, Atlanta.
        N. Engl. J. Med. 2011; 3: 829-841https://doi.org/10.1056/NEJMoa1008862.Diabetes
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • et al.
        Mortality and cardiovascular disease in type 1 and type 2 diabetes.
        N. Engl. J. Med. 2017; 376: 1407-1418https://doi.org/10.1056/NEJMoa1608664
        • Care D.
        • Suppl S.S.
        Cardiovascular disease and risk management: standards of medical care in diabetesd2018.
        Diabetes Care. 2018; 41: S86-S104https://doi.org/10.2337/dc18-S009
        • Sharma A.
        • Green J.B.
        • Dunning A.
        • et al.
        Causes of death in a contemporary cohort of patients with type 2 diabetes and atherosclerotic cardiovascular disease: insights from the TECOS trial.
        Diabetes Care. 2017; 40: 1763-1770https://doi.org/10.2337/dc17-1091
        • The UK Prospective Diabetes Study (UKPDS) Group
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).
        Lancet. 1998; 352: 854-865https://doi.org/10.1016/S0140-6736(98)07037-8
        • The UK Prospective Diabetes Study (UKPDS) Group
        Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
        Lancet. 1998; 352: 837-853
        • Ohkubo Y.
        • Kishikawa H.
        • Araki E.
        • Miyata T.
        • Isami S.
        • Motoyoshi S.
        • Kojima Y.
        • Furuyoshi N.
        • Shichiri M.
        Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study.
        Diabetes Res. Clin. Pract. Suppl. 1995; 28: 103-117
        • Selvin E.
        • Marinopoulos S.
        • Berkenblit G.
        • Rami T.
        • Brancati F.L.
        • Powe N.R.
        • Golden S.H.
        Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus.
        Ann. Intern. Med. 2004; 141: 421-431
        • Stettler C.
        • Allemann S.
        • Jüni P.
        • Cull C.A.
        • Holman R.R.
        • Egger M.
        • Krähenbühl S.
        • Diem P.
        Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials.
        Am. Heart J. 2006; 152: 27-38
        • ADVANCE Collaborative Group
        • Patel A.
        • MacMahon S.
        • Chalmers J.
        • Neal B.
        • Billot L.
        • Woodward M.
        • Marre M.
        • Cooper M.
        • Glasziou P.
        • Grobbee D.
        • Hamet P.
        • Harrap S.
        • Heller S.
        • Liu L.
        • Mancia G.
        • Mogensen C.E.
        • Pan C.
        • Poulter N.
        • Rodgers A.
        • Williams B.
        • Bompoint S.
        • de Galan T.F.
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N. Engl. J. Med. 2008; 358: 2560-2572
        • Duckworth William
        • Abraira Carlos
        • Moritz Thomas
        • Reda Domenic
        • Emanuele Nicholas
        • Reaven Peter D.
        • Zieve Franklin J.
        • Marks Jennifer
        • Davis Stephen N.
        • Hayward Rodney
        • Warren Stuart R.
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N. Engl. J. Med. 2009; 360: 129-139
        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • Matthews D.R.
        • Andrew H.
        • Neil W.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N. Engl. J. Med. 2008; 359: 1577-1589
        • Seferović P.M.
        • Petrie M.C.
        • Filippatos G.S.
        • et al.
        Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology.
        Eur. J. Heart Fail. 2018; 20: 853-872https://doi.org/10.1002/ejhf.1170
        • McMurray J.J.V.
        • Gerstein H.C.
        • Holman R.R.
        • Pfeffer M.A.
        Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored.
        Lancet Diabetes Endocrinol. 2014; 2: 843-851https://doi.org/10.1016/S2213-8587(14)70031-2
        • Shah A.D.
        • Langenberg C.
        • Rapsomaniki E.
        • et al.
        Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people.
        Lancet Diabetes Endocrinol. 2015; 3: 105-113https://doi.org/10.1016/S2213-8587(14)70219-0
        • Packer M.
        Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure.
        Circulation. 2017; 136: 1548-1559https://doi.org/10.1161/CIRCULATIONAHA.117.030418
        • Sandesara P.B.
        • O’Neal W.T.
        • Kelli H.M.
        • et al.
        The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction.
        Diabetes Care. 2018; 41: 150-155https://doi.org/10.2337/dc17-0755
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • et al.
        Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes.
        N. Engl. J. Med. 2018; 379: 633-644https://doi.org/10.1056/NEJMoa1800256
        • Heidenreich P.A.
        • Trogdon J.G.
        • Khavjou O.A.
        • et al.
        Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association.
        Circulation. 2011; 123: 933-944https://doi.org/10.1161/CIR.0b013e31820a55f5
        • Nissen S.E.
        • Wolski K.
        Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
        N. Engl. J. Med. 2007; 356 ([Erratum, N Engl J Med 2007;357:100]): 2457-2471
        • Food, U. S., and D. Administration
        “Guidance for industry: diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2”.
        Diabetes. 2008;
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • et al.
        Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus.
        N. Engl. J. Med. 2013; 3691317e26
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • et al.
        Alogliptin after acute coronary syndrome in patients with type 2 diabetes.
        N. Engl. J. Med. 2013; 3691327e35
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • et al.
        Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes.
        N. Engl. J. Med. 2015; 373232e42
        • Rosenstock J.
        • Perkovic V.
        • Johansen O.E.
        • et al.
        Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk.
        JAMA. 2019; 321: 69
        • US Food and Drug Administration
        FDA Drug Safety Communication: FDA Adds Warnings About Heart Failure Risk to Labels of Type 2 Diabetes Medicines Containing Saxagliptin and Alogliptin.
        2016
        • White William B.
        • Kupfer Stuart
        • Zannad Faiez
        • Mehta Cyrus R.
        • Wilson Craig A.
        • Lei Lanyu
        • Bakris George L.
        • Nissen Steven E.
        • Cushman William C.
        • Heller Simon R.
        • Bergenstal Richard M.
        • Fleck Penny R.
        • Cannon C.P.
        Cardiovascular mortality in patients with type 2 diabetes and recent acute coronary syndromes from the EXAMINE trial.
        Diabetes Care. 2016; 39: 1267-1273https://doi.org/10.2337/dc16-0303
        • Pfeffer M.A.
        • Claggett B.
        • Diaz R.
        • Dickstein K.
        • Gerstein H.C.
        • Køber L.V.
        • et al.
        Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
        N. Engl. J. Med. 2015; 373: 2247-2257https://doi.org/10.1056/NEJMoa1509225
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • Kristensen P.
        • Mann J.F.E.
        • Nauck M.A.
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N. Engl. J. Med. 2016; 375: 311-322https://doi.org/10.1056/NEJMoa1603827
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • Eliaschewitz F.G.
        • Jódar E.
        • Leiter L.A.
        • et al.
        Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N. Engl. J. Med. 2016; 375: 1834-1844https://doi.org/10.1056/NEJMoa1607141
        • Holman R.R.
        • Bethel M.A.
        • Mentz R.J.
        • Thompson V.P.
        • Lokhnygina Y.
        • Buse J.B.
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
        N. Engl. J. Med. 2017; 377: 1228-1239https://doi.org/10.1056/NEJMoa1612917
        • Hernandez A.F.
        • Green J.B.
        • Janmohamed S.
        • D’Agostino Sr., R.B.
        • Granger C.B.
        • Jones N.P.
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): a double- blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529https://doi.org/10.1016/S0140-6736(18)3
        • Gerstein H.C.
        • Colhoun H.M.
        • Dagenais G.R.
        • Diaz R.
        • Lakshmanan M.
        • Pais P.
        • et al.
        Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.
        Lancet. 2019; 394: 121-130https://doi.org/10.1016/s0140-6736(19)31
        • Husain M.
        • Birkenfeld A.L.
        • Donsmark M.
        • Dungan K.
        • Eliaschewitz F.G.
        • Franco D.R.
        • et al.
        Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N. Engl. J. Med. 2019; 381: 841-851https://doi.org/10.1056/NEJMoa1901118
        • Kristensen S.L.
        • Rorth R.
        • Jhund P.S.
        • Docherty K.F.
        • Sattar N.
        • Preiss D.
        • et al.
        Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet Diabetes Endocrinol. 2019; 7: 776-785https://doi.org/10.1016/s2213-8587(19)3
        • Giugliano D.
        • Maiorino M.I.
        • Bellastella G.
        • Longo M.
        • Chiodini P.
        • Esposito K.
        GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials.
        Diabetes Obes. Metab. 2019; 21: 2576-2580https://doi.org/10.1111/dom.13847
        • Mannucci E.
        • Dicembrini I.
        • Nreu B.
        • Monami M.
        Glucagon-like peptide-1 receptor agonists and cardiovascular outcomes in patients with and without prior cardiovascular events: an updated meta-analysis and subgroup analysis of randomized controlled trials.
        Diabetes Obes. Metab. 2019; 22: 203-211https://doi.org/10.1111/dom.13888
        • Zhu J.
        • Yu X.
        • Zheng Y.
        • Li J.
        • Wang Y.
        • Lin Y.
        • et al.
        Association of glucoselowering medications with cardiovascular outcomes: an umbrella review and evidence map.
        Lancet Diabetes Endocrinol. 2020; 8: 192-205https://doi.org/10.1016/S2213-8587(19)
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        BMJ. 2009; 339: 332-336https://doi.org/10.1136/bmj.b2535
        • Wells G.
        • Shea B.
        • O’Connell D.
        • et al.
        The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses.
        2020
        • Paul S.K.
        • Klein K.
        • Maggs D.
        • Best J.H.
        The association of the treatment with glucagon-like peptide-1 receptor agonist exenatide or insulin with cardiovascular outcomes in patients with type 2 diabetes: a retrospective observational study.
        Cardiovasc. Diabetol. 2015; 14: 1-9https://doi.org/10.1186/s12933-015-0178-3
        • Velez M.
        • et al.
        Association of anti-diabetic medications targeting the glucagon-like peptide-1 pathway and heart failure events in patients with diabetes.
        J. Card. Fail. 2015; 21: 2-8https://doi.org/10.1016/j.cardfail.2014.10.012.Association
        • Kannan S.
        • Pantalone K.M.
        • Matsuda S.
        • Wells B.J.
        • Karafa M.
        • Zimmerman R.S.
        Risk of overall mortality and cardiovascular events in patients with type 2 diabetes on dual drug therapy including metformin: a large database study from the Cleveland Clinic.
        J. Diabetes. 2016; 8: 279-285https://doi.org/10.1111/1753-0407.12301
        • Dawwas G.K.
        • Smith S.M.
        • Park H.
        Risk of heart failure hospitalization among users of dipeptidyl peptidase-4 inhibitors compared to glucagon-like peptide-1 receptor agonists.
        Cardiovasc. Diabetol. 2018; 17: 1-9https://doi.org/10.1186/s12933-018-0746-4
        • Svanström H.
        • Ueda P.
        • Melbye M.
        • et al.
        Use of liraglutide and risk of major cardiovascular events: a register-based cohort study in Denmark and Sweden.
        Lancet Diabetes Endocrinol. 2019; 7: 106-114https://doi.org/10.1016/S2213-8587(18)30320-6
        • Sardu C.
        • Paolisso P.
        • Sacra C.
        • et al.
        Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: arrhythmic burden, hospi.
        Cardiovasc. Diabetol. 2018; 17: 1-16https://doi.org/10.1186/s12933-018-0778-9
        • Trevisan M.
        • Fu E.L.
        • Szummer K.
        • et al.
        Glucagon-like peptide-1 receptor agonists and the risk of cardiovascular events in diabetes patients surviving an acute myocardial infarction.
        Eur Hear J Cardiovasc Pharmacother. 2020; : 1-8https://doi.org/10.1093/ehjcvp/pvaa004
        • Yu O.H.Y.
        • Filion K.B.
        • Azoulay L.
        • Patenaude V.
        • Majdan A.
        • Suissa S.
        Incretin-based drugs and the risk of congestive heart failure.
        Diabetes Care. 2015; 38: 277-284https://doi.org/10.2337/dc14-1459
        • Filion K.B.
        • Azoulay L.
        • Platt R.W.
        • et al.
        A multicenter observational study of incretin-based drugs and heart failure.
        N. Engl. J. Med. 2016; 374: 1145-1154https://doi.org/10.1056/NEJMoa1506115
        • Santucci C.
        • Franchi M.
        • Staszewsky L.
        • et al.
        Incretin-based drugs and hospitalization for heart failure in the clinical practice: a nested case-control study.
        Diabetes Res. Clin. Pract. 2018; 146: 172-179https://doi.org/10.1016/j.diabres.2018.10.006
        • Li L.
        • Li S.
        • Liu J.
        • et al.
        Glucagon-like peptide-1 receptor agonists and heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies.
        BMC Cardiovasc. Disord. 2016; 16https://doi.org/10.1186/s12872-016-0260-0
        • AstraZeneca, Lilly E, and Company
        Exenatide and Basal Insulins Use in the Real Setting: an Observational Study in Patients With Type 2 Diabetes.
        (In: ClinicalTrials.gov. Natl Libr Med (US))2000
        • Alfayez O.M.
        • Almutairi A.R.
        • Aldosari A.
        • Al Yami M.S.
        Update on cardiovascular safety of incretin-based therapy in adults with type 2 diabetes mellitus: a meta-analysis of cardiovascular outcome trials.
        Can. J. Diabetes. 2019; 43: 538-545.e2https://doi.org/10.1016/j.jcjd.2019.04.003
        • Li L.
        • Li S.
        • Deng K.
        • et al.
        Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies.
        BMJ. 2016; 352: i610https://doi.org/10.1136/bmj.i610
        • Kundu A.
        • Sardar P.
        • Ghosh S.
        • Patel P.
        • Chatterjee S.
        • Meyer T.E.
        Risk of heart failure with dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials.
        Int. J. Cardiol. 2016; 212: 203-205https://doi.org/10.1016/j.ijcard.2016.03.016
        • Rehman M.B.
        • Tudrej B.V.
        • Soustre J.
        • et al.
        Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: meta-analysis of placebo-controlled randomized clinical trials.
        Diabetes Metab. 2017; 43: 48-58https://doi.org/10.1016/j.diabet.2016.09.005
        • Verma S.
        • Goldenberg R.M.
        • Bhatt D.L.
        • et al.
        Dipeptidyl peptidase-4 inhibitors and the risk of heart failure: a systematic review and meta-analysis.
        C Open. 2017; 5: E152-E177https://doi.org/10.9778/cmajo.20160058
        • Elgendy I.Y.
        • Mahmoud A.N.
        • Barakat A.F.
        • et al.
        Cardiovascular safety of dipeptidyl-peptidase IV inhibitors: a meta-analysis of placebo-controlled randomized trials.
        Am. J. Cardiovasc. Drugs. 2017; 17: 143-155https://doi.org/10.1007/s40256-016-0208-x
        • Monami M.
        • Dicembrini I.
        • Mannucci E.
        Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials.
        Nutr. Metab. Cardiovasc. Dis. 2014; 24: 689-697https://doi.org/10.1016/j.numecd.2014.01.017
        • Zhang X.-L.
        • Zhu Q.-Q.
        • Chen Y.-H.
        • et al.
        Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis.
        J. Am. Heart Assoc. 2018; 7https://doi.org/10.1161/JAHA.117.007165
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N. Engl. J. Med. 2015; 373: 2117-2128https://doi.org/10.1056/NEJMoa1504720
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N. Engl. J. Med. 2017; 377: 644-657https://doi.org/10.1056/NEJMoa1611925
        • Wiviott S.D.
        • Raz I.
        • Sabatine M.S.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes. Reply.
        N. Engl. J. Med. 2019; 380: 1881-1882https://doi.org/10.1056/NEJMc1902837
        • Zelniker T.A.
        • Wiviott S.D.
        • Raz I.
        • et al.
        SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet (London, England). 2019; 393: 31-39https://doi.org/10.1016/S0140-6736(18)32590-X
        • Zelniker T.A.
        • Wiviott S.D.
        • Raz I.
        • et al.
        Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus.
        Circulation. 2019; 139: 2022-2031https://doi.org/10.1161/CIRCULATIONAHA.118.038868
        • Seong J.-M.
        • Kim J.J.
        • Kim H.J.
        • Sohn H.S.
        Comparison of heart failure risk and medical costs between patients with type 2 diabetes mellitus treated with dapagliflozin and dipeptidyl peptidase-4 inhibitors: a nationwide population-based cohort study.
        Cardiovasc. Diabetol. 2020; 19: 95https://doi.org/10.1186/s12933-020-01060-1
        • Filion K.B.
        • Lix L.M.
        • Yu O.H.
        • et al.
        Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: multi-database retrospective cohort study.
        BMJ. 2020; 370: m3342https://doi.org/10.1136/bmj.m3342
        • Birkeland K.I.
        • Jørgensen M.E.
        • Carstensen B.
        • et al.
        Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis.
        Lancet Diabetes Endocrinol. 2017; 5: 709-717https://doi.org/10.1016/S2213-8587(17)30258-9
        • Udell J.A.
        • Yuan Z.
        • Rush T.
        • Sicignano N.M.
        • Galitz M.
        • Rosenthal N.
        Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor: results from the EASEL population-based cohort study (evidence for cardiovascular outcomes with sodium glucose cotransporter 2 inhibitors in the real world).
        Circulation. 2018; 137: 1450-1459https://doi.org/10.1161/CIRCULATIONAHA.117.031227
        • Marsico F.
        • Paolillo S.
        • Gargiulo P.
        • Bruzzese D.
        • Dell’Aversana S.
        • Esposito I.
        • et al.
        Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials.
        Eur. Heart J. 2020; 41: 3346-3358https://doi.org/10.1093/eurheartj/ehaa082
        • American Diabetes Association
        Standards of medical care in diabetes— 2020: 9. Pharmacologic approaches to glycemic treatment.
        Diabetes Care. 2020; 43: S98-110https://doi.org/10.2337/dc19-s009