Advertisement

Real-time continuous glucose monitoring improves glycemic control and reduces hypoglycemia: Real-world data

  • Author Footnotes
    1 0000-0002-9599-8082
    Ravi Kant
    Footnotes
    1 0000-0002-9599-8082
    Affiliations
    Division of Endocrinology, Diabetes and Nutrition, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Author Footnotes
    2 0000-0002-2232-0078
    Mc Anto Antony
    Footnotes
    2 0000-0002-2232-0078
    Affiliations
    Division of Endocrinology, Diabetes and Nutrition, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Author Footnotes
    3 0000-0002-9916-9513
    David Geurkink
    Footnotes
    3 0000-0002-9916-9513
    Affiliations
    Department of Medicine, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Author Footnotes
    4 0000-0002-0589-8505
    Nathan Gilreath
    Footnotes
    4 0000-0002-0589-8505
    Affiliations
    Department of Medicine, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Author Footnotes
    5 0000-0003-2836-5434
    Lakshya Chandra
    Footnotes
    5 0000-0003-2836-5434
    Affiliations
    Department of Medicine, Bon Secours Saint Francis Health System, Greenville, SC 29601, United States
    Search for articles by this author
  • Author Footnotes
    6 0000-0003-2995-4994
    Elizabeth Zipprer
    Footnotes
    6 0000-0003-2995-4994
    Affiliations
    Department of Surgery, MercyOne Des Moines, Des Moines, Iowa, IA 50314, Unites States
    Search for articles by this author
  • Author Footnotes
    7 0000-0002-1075-1284
    Kashif M. Munir
    Footnotes
    7 0000-0002-1075-1284
    Affiliations
    Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
    Search for articles by this author
  • Author Footnotes
    8 0000-0001-9481-9110
    Rashmi Chandra
    Footnotes
    8 0000-0001-9481-9110
    Affiliations
    Department of Medicine, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Veronica G. Parker
    Affiliations
    Biostatistician, School of Nursing, Clemson University, Clemson, SC 29634, United States
    Search for articles by this author
  • Author Footnotes
    9 0000-0001-5370-3146
    Vipin Verma
    Correspondence
    Correspondence to: Department of Medicine, Medical University of South Carolina, AnMed Campus, 2000 E Greenville St., Suite # 3700, Anderson SC29621, United States.
    Footnotes
    9 0000-0001-5370-3146
    Affiliations
    Department of Medicine, Medical University of South Carolina, AnMed Campus, Anderson, SC 29621, United States
    Search for articles by this author
  • Author Footnotes
    1 0000-0002-9599-8082
    2 0000-0002-2232-0078
    3 0000-0002-9916-9513
    4 0000-0002-0589-8505
    5 0000-0003-2836-5434
    6 0000-0003-2995-4994
    7 0000-0002-1075-1284
    8 0000-0001-9481-9110
    9 0000-0001-5370-3146
Published:September 15, 2022DOI:https://doi.org/10.1016/j.pcd.2022.09.005

      Highlights

      • Real time continuous glucose monitor (RT-CGM) improves glycemic control.
      • Patients with baseline HbA1c > 7 % had more robust HbA1c reduction with RT-CGM use.
      • User blinded CGM (5–14 day) was used to obtain baseline CGM metrics.
      • Hypoglycemia including severe hypoglycemia decreased significantly with RT-CGM use.
      • RT-CGM use in real world practice also reduced glycemic variability significantly.

      Abstract

      Aim

      To study the effect of real time continuous glucose monitor (RT-CGM) use on glycemic parameters in patients with diabetes mellitus (DM) in real world practice.

      Methods

      We retrospectively studied 91 adult subjects with DM who had been using Dexcom™ RT-CGM. Two consecutive hemoglobin A1c (HbA1c), both prior to and after at least 3 months of RT-CGM initiation, were collected. A total of 31 subjects completed a 5–14 day user blinded CGM using a Freestyle Libre™ prior to RT-CGM initiation. The first two week period following at least 3 months use of RT-CGM was analyzed for CGM metrics.

      Results

      A total of 51.6 % of subjects had T1DM, 34.1 % used continuous subcutaneous insulin infusion (CSII), and 62.6 % had DM for > 10 years. Both HbA1c obtained following RT-CGM initiation decreased significantly compared to baseline (8.11 + 1.47% vs 7.69 + 1.25 %; P = 0.002 & 8.16 + 1.51 % vs 7.62 + 1.06 %; P = 0.001). Subjects with baseline HbA1c > 7.0 % showed even more robust reduction in both HbA1c after RT-CGM initiation (8.74 + 1.24 % vs 7.99 + 1.22 %; P = 0.000 & 8.74 + 1.32 % vs 7.85 + 1.07 %; P = 0.001). On comparison of CGM metrics, there was a significant reduction in time spent in hypoglycemia (sugars < 70 mg/dl) including severe hypoglycemia (sugars < 54 mg/dl) after initiation of the RT-CGM (9.16 + 8.68 % vs 1.29 + 2.21 %; P = <0.001 & 4.58 + 5.43 % vs 0.28 + 0.58 %; P = <0.001). CoV of glucose was also decreased significantly (39.61 + 9.36 % vs 31.06 + 6.74 %; P = <0.001) with RT- CGM use.

      Conclusion

      RT-CGM use for at least 3 months in patients with DM results in meaningful HbA1c reductions with stable glycemic control without increasing the risk of hypoglycemia.

      Abbreviations:

      DM (Diabetes mellitus), US (United States of America), HbA1C (Hemoglobin A1c), MACE (major adverse cardiovascular events), ACCORD (Action to Control Cardiovascular Risk in Diabetes), RT-CGM (Real-time continuous glucose monitoring), RCTs (randomized controlled trials), T1 (Type 1), T2 DM (Type 2), blinded CGM (user blinded Freestyle Libre™ CGM system), CoV (glucose coefficient of variation), MDIs (multiple daily injections), CSII (continuous subcutaneous insulin infusion), CAD (coronary artery disease)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American Diabetes Association. Statistics About Diabetes. Available from: URL: 〈https://www.diabetes.org/resources/statistics/statistics-about-diabetes〉.

        • Miller K.M.
        • Foster N.C.
        • Beck R.W.
        • Bergenstal R.M.
        • DuBose S.N.
        • DiMeglio L.A.
        • Maahs D.M.
        • Tamborlane W.V.
        T1D Exchange Clinic Network. Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry.
        Diabetes Care. 2015; 38: 971-978https://doi.org/10.2337/dc15-0078]
      2. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):837–53. Erratum in: Lancet 1999 Aug 14;354(9178):602. [PMID: 9742976].

        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • Matthews D.R.
        • Neil H.A.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N. Engl. J. Med. 2008 9; : 1577-1589https://doi.org/10.1056/NEJMoa0806470]
        • Gerstein H.C.
        • Miller M.E.
        • Byington R.P.
        • Goff Jr, D.C.
        • Bigger J.T.
        • Buse J.B.
        • Cushman W.C.
        • Genuth S.
        • Ismail-Beigi F.
        • Grimm Jr, R.H.
        Probstfield JL, Simons-Morton DG, Friedewald WT, Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes.
        N. Engl. J. Med. 2008; 358: 2545-2559https://doi.org/10.1056/NEJMoa0802743]
        • Kant R.
        • Munir K.M.
        • Kaur A.
        • Verma V.
        Prevention of macrovascular complications in patients with type 2 diabetes mellitus: Review of cardiovascular safety and efficacy of newer diabetes medications.
        World J. Diabetes. 2019 15; 10: 324-332https://doi.org/10.4239/wjd.v10.i6.324]
        • Seaquist E.R.
        • Miller M.E.
        • Bonds D.E.
        • Feinglos M.
        • Goff Jr, D.C.
        • Peterson K.
        • Senior P.
        ACCORD Investigators. The impact of frequent and unrecognized hypoglycemia on mortality in the ACCORD study.
        Diabetes Care. 2012; 35: 409-414https://doi.org/10.2337/dc11-0996]
        • Beck R.W.
        • Riddlesworth T.
        • Ruedy K.
        • Ahmann A.
        • Bergenstal R.
        • Haller S.
        • Kollman C.
        • Kruger D.
        • McGill J.B.
        • Polonsky W.
        • Toschi E.
        • Wolpert H.
        • Price D.
        DIAMOND Study Group. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial.
        JAMA. 2017; 317: 371-378https://doi.org/10.1001/jama.2016.19975]
        • Lind M.
        • Polonsky W.
        • Hirsch I.B.
        • Heise T.
        • Bolinder J.
        • Dahlqvist S.
        • Schwarz E.
        • Ólafsdóttir A.F.
        • Frid A.
        • Wedel H.
        • Ahlén E.
        • Nyström T.
        • Hellman J.
        Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections.
        GOLD Random Clin. Trial JAMA. 2017; 317: 379-387https://doi.org/10.1001/jama.2016.19976
        • Maiorino M.I.
        • Signoriello S.
        • Maio A.
        • Chiodini P.
        • Bellastella G.
        • Scappaticcio L.
        • Longo M.
        • Giugliano D.
        • Esposito K.
        Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: a systematic review with meta-analysis of randomized controlled trials.
        Diabetes Care. 2020; 43: 1146-1156https://doi.org/10.2337/dc19-1459]
        • Charleer S.
        • Mathieu C.
        • Nobels F.
        • De Block C.
        • Radermecker R.P.
        • Hermans M.P.
        • Taes Y.
        • Vercammen C.
        • T'Sjoen G.
        • Crenier L.
        • Fieuws S.
        • Keymeulen B.
        • Gillard P.
        RESCUE trial investigators. Effect of continuous glucose monitoring on glycemic control, acute admissions, and quality of life: a real-world study.
        J. Clin.Endocrinol. Metab. 2018; 103: 1224-1232https://doi.org/10.1210/jc.2017-02498]
        • McCall A.L.
        Insulin therapy and hypoglycemia.
        Endocrinol. Metab. Clin. North Am. 2012; 41: 57-87https://doi.org/10.1016/j.ecl.2012.03.001]
        • Lopez J.M.
        • Annunziata K.
        • Bailey R.A.
        • Rupnow M.F.
        • Morisky D.E.
        Impact of hypoglycemia on patients with type 2 diabetes mellitus and their quality of life, work productivity, and medication adherence.
        Patient Prefer Adherence. 2014; 8: 683-692https://doi.org/10.2147/PPA.S58813]
        • Geller A.I.
        • Shehab N.
        • Lovegrove M.C.
        • Kegler S.R.
        • Weidenbach K.N.
        • Ryan G.J.
        • Budnitz D.S.
        National estimates of insulin-related hypoglycemia and errors leading to emergency department visits and hospitalizations.
        JAMA Intern. Med. 2014; 174: 678-686https://doi.org/10.1001/jamainternmed.2014.136
        • Lipska K.J.
        • Ross J.S.
        • Wang Y.
        • Inzucchi S.E.
        • Minges K.
        • Karter A.J.
        • Huang E.S.
        • Desai M.M.
        • Gill T.M.
        • Krumholz H.M.
        National trends in US hospital admissions for hyperglycemia and hypoglycemia among Medicare beneficiaries.
        JAMA Intern. Med. 2014; 174: 1116-1124https://doi.org/10.1001/jamainternmed.2014.1824]
        • Fiallo-Scharer R.
        • Cheng J.
        • Beck R.W.
        • Buckingham B.A.
        • Chase H.P.
        • Kollman C.
        • Laffel L.
        • Lawrence J.M.
        • Mauras N.
        • Tamborlane W.V.
        • Wilson D.M.
        • Wolpert H.
        • Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group
        Factors predictive of severe hypoglycemia in type 1 diabetes: analysis from the Juvenile Diabetes Research Foundation continuous glucose monitoring randomized control trial dataset.
        Diabetes Care. 2011; 34: 586-590https://doi.org/10.2337/dc10-1111]
        • Davis R.E.
        • Morrissey M.
        • Peters J.R.
        • Wittrup-Jensen K.
        • Kennedy-Martin T.
        • Currie C.J.
        Impact of hypoglycaemia on quality of life and productivity in type 1 and type 2 diabetes.
        Curr. Med. Res. Opin. 2005; 21: 1477-1483https://doi.org/10.1185/030079905×61929]
        • Brod M.
        • Wolden M.
        • Christensen T.
        • Bushnell D.M.
        A nine country study of the burden of non-severe nocturnal hypoglycaemic events on diabetes management and daily function.
        Diabetes Obes. Metab. 2013; 15: 546-557https://doi.org/10.1111/dom.12070]
        • Vigersky R.A.
        The benefits, limitations, and cost-effectiveness of advanced technologies in the management of patients with diabetes mellitus.
        J. Diabetes Sci. Technol. 2015; 9: 320-330https://doi.org/10.1177/1932296814565661]
        • Danne T.
        • Nimri R.
        • Battelino T.
        • Bergenstal R.M.
        • Close K.L.
        • DeVries J.H.
        • Garg S.
        • Heinemann L.
        • Hirsch I.
        • Amiel S.A.
        • Beck R.
        • Bosi E.
        • Buckingham B.
        • Cobelli C.
        • Dassau E.
        • Doyle 3rd, F.J.
        • Heller S.
        • Hovorka R.
        • Jia W.
        • Jones T.
        • Kordonouri O.
        • Kovatchev B.
        • Kowalski A.
        • Laffel L.
        • Maahs D.
        • Murphy H.R.
        • Nørgaard K.
        • Parkin C.G.
        • Renard E.
        • Saboo B.
        • Scharf M.
        • Tamborlane W.V.
        • Weinzimer S.A.
        • Phillip M.
        International consensus on use of continuous glucose monitoring.
        Diabetes Care. 2017; 40: 1631-1640https://doi.org/10.2337/dc17-1600]
        • Marchand L.
        • Reffet S.
        • Vouillarmet J.
        • Cugnet-Anceau C.
        • Disse E.
        • Thivolet C.
        The 36 % coefficient of variation for glucose proposed for separating stable and labile diabetes is clinically relevant: a continuous glucose monitoring-based study in a large population of type 1 diabetes patients.
        Diabetes Metab. 2019; 45: 598-600https://doi.org/10.1016/j.diabet.2018.05.009]
        • Gorst C.
        • Kwok C.S.
        • Aslam S.
        • Buchan I.
        • Kontopantelis E.
        • Myint P.K.
        • Heatlie G.
        • Loke Y.
        • Rutter M.K.
        • Mamas M.A.
        Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis.
        Diabetes Care. 2015; 38: 2354-2369https://doi.org/10.2337/dc15-1188]
        • Cardoso C.R.L.
        • Leite N.C.
        • Moram C.B.M.
        • Salles G.F.
        Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: the Rio de Janeiro Type 2 diabetes cohort study.
        Cardiovasc. Diabetol. 2018; 17: 33https://doi.org/10.1186/s12933-018-0677-0]
        • Garg S.K.
        • Kelly W.C.
        • Voelmle M.K.
        • Ritchie P.J.
        • Gottlieb P.A.
        • McFann K.K.
        • Ellis S.L.
        Continuous home monitoring of glucose: improved glycemic control with real-life use of continuous glucose sensors in adult subjects with type 1 diabetes.
        Diabetes Care. 2007; 30: 3023-3025https://doi.org/10.2337/dc07-1436]
        • Jafri R.
        • Balliro C.
        • El-Khatib F.
        • Sullivan M.
        • Hillard M.
        • O'Donovan A.
        • Selagamsetty R.
        • Zheng H.
        • Damiano E.R.
        • Russell S.J.
        A three-way accuracy comparison of the dexcom G5, Abbott Freestyle Libre Pro, and SenseonicsEversense CGM devices in an home-use study of subjects with type 1.
        Diabetes Diabetes Technol. Ther. 2020; https://doi.org/10.1089/dia.2019.0449]