Advertisement

Biochemical profiling, pharmacological management and clinical outcomes in type 2 diabetes in Danish primary care from 2001 to 2015

Published:October 19, 2022DOI:https://doi.org/10.1016/j.pcd.2022.10.006

      Highlights

      • Massive expansion in type 2 diabetes in primary care from early 2000s to 2015.
      • Improvements in cholesterol levels and antihypertensive and lipid-lowering therapy.
      • Improvements in cardiovascular and mortality outcomes.
      • Conspicuous minority still not receiving diabetes-related medication.

      Abstract

      Aims

      Primary care plays an integral role in the management of type 2 diabetes (T2D). We investigated in a large group of individuals in this setting the biochemical profiles, pharmacological management and clinical outcomes as well as their changes over time.

      Methods

      This is a register-based study including relevant laboratory test results requested between 2000 and 2015 by general practitioners in the greater Copenhagen area. We identified 72,044 individuals with T2D on whom data concerning prescription medicine and clinical outcomes were obtained from national registries.

      Results

      The number of individuals with T2D greatly increased from 2001 to 2015. Hemoglobin A1c, estimated glomerular filtration rate and urine albumin creatinine ratio did not change, but cholestrol levels improved. The proportion redeeming anti-diabetics remained around 80%, with an increase for metformin. The use of cardiovascular drugs increased. All-cause and especially cardiovascular mortality decreased over the period. Hospital admissions for non-fatal cardiovascular events dropped.

      Conclusion

      The number of individuals with T2D in primary care increased dramatically whereas pharmacological management, control of risk factors and clinical outcomes seem to have improved. Nevertheless, a conspicuous minority did not receive diabetes-related medication.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Turner R.C.
        • Holman R.R.
        • Cull C.A.
        • Stratton I.M.
        • Matthews D.R.
        • Frighi V.
        • Manley S.E.
        • Neil A.
        • McElroy H.
        • Wright D.
        • Kohner E.
        • Fox C.
        • Hadden D.
        Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.
        Lancet (London, England). 1998; 352: 837-853
        • Parving H.H.
        • Lehnert H.
        • Bröchner-Mortensen J.
        • Gomis R.
        • Andersen S.
        • Arner P.
        The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.
        N. Engl. J. Med. 2001; 345: 870-878https://doi.org/10.1056/NEJMoa011489
        • Gaede P.
        • Vedel P.
        • Larsen N.
        • Jensen G.V.
        • Parving H.H.
        • Pedersen O.
        Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
        N. Engl. J. Med. 2003; 348: 383-393https://doi.org/10.1056/NEJMoa021778
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • et al.
        Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N. Engl. J. Med. 2016; 375: 1834-1844https://doi.org/10.1056/NEJMoa1607141
        • McMurray J.J.V.
        • Solomon S.D.
        • Inzucchi S.E.
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N. Engl. J. Med. 2019; 381: 1995-2008https://doi.org/10.1056/NEJMoa1911303
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N. Engl. J. Med. 2019; 380: 2295-2306https://doi.org/10.1056/NEJMoa1811744
        • Harding J.L.
        • Pavkov M.E.
        • Magliano D.J.
        • Shaw J.E.
        • Gregg E.W.
        Global trends in diabetes complications: a review of current evidence.
        Diabetologia. 2019; 62: 3-16https://doi.org/10.1007/s00125-018-4711-2
        • Carstensen B.
        • Rønn P.F.
        • Jørgensen M.E.
        Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016.
        BMJ Open Diabetes Res. Care. 2020; 8https://doi.org/10.1136/bmjdrc-2019-001071
        • Borg R.
        • Persson F.
        • Siersma V.
        • Lind B.
        • de Fine Olivarius N.
        • Andersen C.L.
        Interpretation of HbA(1c) in primary care and potential influence of anaemia and chronic kidney disease: an analysis from the Copenhagen primary care laboratory (CopLab) database.
        Diabet. Med.: a J. Br. Diabet. Assoc. 2018; 35: 1700-1706https://doi.org/10.1111/dme.13776
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann. Intern. Med. 2009; 150: 604-612
        • Janbek J.
        • Kriegbaum M.
        • Grand M.K.
        • et al.
        The Copenhagen primary care laboratory pregnancy (CopPreg) database.
        BMJ Open. 2020; 10e034318https://doi.org/10.1136/bmjopen-2019-034318
        • Langsted A.
        • Freiberg J.J.
        • Nordestgaard B.G.
        Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction.
        Circulation. 2008; 118: 2047-2056https://doi.org/10.1161/circulationaha.108.804146
        • Nordestgaard B.G.
        • Langsted A.
        • Mora S.
        • et al.
        Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cutpoints-a joint consensus statement from the European atherosclerosis society and European federation of clinical chemistry and laboratory medicine.
        Clin. Chem. 2016; 62: 930-946https://doi.org/10.1373/clinchem.2016.258897
      1. DANAK - The Danish accreditation fund. Accessed March 18th 2021, 2021. 〈http://english.danak.dk/〉.

      2. Type 2-diabetes – et metabolisk syndrom . Dansk Selskab for Almen Medicin (DSAM); 2012. Accessed 31–12-2020.

      3. Type 2-diabetes i almen praksis – En evidensbaseret vejledning2004. Dansk selskab for almen medicin 2004. Accessed 31–12-2020.

        • Ogurtsova K.
        • da Rocha Fernandes J.D.
        • Huang Y.
        • et al.
        IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040.
        Diabetes Res. Clin. Pract. 2017; 128: 40-50https://doi.org/10.1016/j.diabres.2017.03.024
        • Norhammar A.
        • Bodegård J.
        • Nyström T.
        • Thuresson M.
        • Eriksson J.W.
        • Nathanson D.
        Incidence, prevalence and mortality of type 2 diabetes requiring glucose-lowering treatment, and associated risks of cardiovascular complications: a nationwide study in Sweden, 2006-2013.
        Diabetologia. 2016; 59: 1692-1701https://doi.org/10.1007/s00125-016-3971-y
        • Bakke Å.
        • Cooper J.G.
        • Thue G.
        • et al.
        Type 2 diabetes in general practice in Norway 2005-2014: moderate improvements in risk factor control but still major gaps in complication screening.
        BMJ Open Diabetes Res. Care. 2017; 5e000459https://doi.org/10.1136/bmjdrc-2017-000459
        • Heintjes E.M.
        • Houben E.
        • Beekman-Hendriks W.L.
        • et al.
        Trends in mortality, cardiovascular complications, and risk factors in type 2 diabetes.
        Neth. J. Med. 2019; 77: 317-329
        • Ali M.K.
        • Bullard K.M.
        • Saaddine J.B.
        • Cowie C.C.
        • Imperatore G.
        • Gregg E.W.
        Achievement of goals in U.S. diabetes care, 1999-2010.
        N. Engl. J. Med. 2013; 368: 1613-1624https://doi.org/10.1056/NEJMsa1213829
        • Knudsen S.T.
        • Bodegård J.
        • Birkeland K.I.
        • et al.
        Risk factor management of type 2 diabetic patients in primary care in the Scandinavian countries between 2003 and 2015.
        Prim. Care Diabetes. 2020; https://doi.org/10.1016/j.pcd.2020.09.006
        • Rungby J.
        • Schou M.
        • Warrer P.
        • Ytte L.
        • Andersen G.S.
        Prevalence of cardiovascular disease and evaluation of standard of care in type 2 diabetes: a nationwide study in primary care.
        Cardiovasc. Endocrinol. 2017; 6: 145-151https://doi.org/10.1097/xce.0000000000000135
        • Seidu S.
        • Than T.
        • Kar D.
        • et al.
        Therapeutic inertia amongst general practitioners with interest in diabetes.
        Prim. Care Diabetes. 2018; 12: 87-91https://doi.org/10.1016/j.pcd.2017.09.001
        • Persson F.
        • Bodegard J.
        • Lahtela J.T.
        • et al.
        Different patterns of second-line treatment in type 2 diabetes after metformin monotherapy in Denmark, Finland, Norway and Sweden (D360 Nordic): a multinational observational study.
        Endocrinol. Diabetes Metab. 2018; 1e00036https://doi.org/10.1002/edm2.36
        • Funck K.L.
        • Knudsen J.S.
        • Hansen T.K.
        • Thomsen R.W.
        • Grove E.L.
        Real-world use of cardioprotective glucose-lowering drugs in patients with type 2 diabetes and cardiovascular disease: a Danish nationwide cohort study, 2012 to 2019.
        Diabetes Obes. Metab. 2020; https://doi.org/10.1111/dom.14245
        • Brown E.
        • Heerspink H.J.L.
        • Cuthbertson D.J.
        • Wilding J.P.H.
        SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications.
        Lancet. 2021; 398: 262-276https://doi.org/10.1016/s0140-6736(21)00536-5
        • Standards of Medical Care in Diabetes-2022
        Abridged for primary care providers.
        Clin. Diabetes. 2022; 40: 10-38https://doi.org/10.2337/cd22-as01
      4. Katrine Bagge Hansen, Jette Kolding Kristensen, Kirubakaran Balasubramaniam, et al. NBV Type 2 diabetes. Danish Endocrine Society Updated October 2021. Accessed March 2022, 2022. 〈https://endocrinology.dk/nbv/diabetes-melitus/behandling-og-kontrol-af-type-2-diabetes/〉.

        • Thomas M.C.
        • Cooper M.E.
        • Zimmet P.
        Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease.
        Nat. Rev. Nephrol. 2016; 12: 73-81https://doi.org/10.1038/nrneph.2015.173
        • Green A.
        • Sortsø C.
        • Jensen P.B.
        • Emneus M.
        Incidence, morbidity, mortality, and prevalence of diabetes in Denmark, 2000-2011: results from the Diabetes Impact Study 2013.
        Clin. Epidemiol. 2015; : 421-430https://doi.org/10.2147/clep.S88577
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • et al.
        Mortality and cardiovascular disease in type 1 and type 2 diabetes.
        N. Engl. J. Med. 2017; 376: 1407-1418https://doi.org/10.1056/NEJMoa1608664
        • Pearson-Stuttard J.
        • Bennett J.
        • Cheng Y.J.
        • et al.
        Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records.
        Lancet Diabetes Endocrinol. 2021; 9: 165-173https://doi.org/10.1016/s2213-8587(20)30431-9