Advertisement

Type 1 diabetes mellitus – Population characterization and metabolic control outcomes in a Portuguese patient sample

Published:January 14, 2023DOI:https://doi.org/10.1016/j.pcd.2023.01.001

      Highlights

      • Our sample included 208 children and adolescents with a median HbA1c of 7.3 %.
      • Insulin pump provided by the national health service allows most to use it.
      • Insulin pump users had a lower HbAc.
      • Continuous glucose monitoring users had a lower HbAc.
      • In Portugal, healthy policy allows to achieve better goals in DM1 patients.

      Abstract

      Aims

      To characterize a cohort of T1D patients and to compare diabetes control between patients using different regimen of insulin therapy and glucose monitoring.

      Methods

      Were included all T1D patients followed at the Pediatric Endocrinology Unit, between April 1st and June 30th, 2021. Several clinical and demographic variables were analyzed.

      Results

      Our sample included 208 patients, 56.7 % males, mean age of 12.7 ± 4.6 years. The median HbA1c was 7.3 %. Most patients, 78.8% were treated with continuous subcutaneous insulin infusion (CSII) and 81.3 % used continuous glucose monitoring (CGM). CSII had a lower HbAc compared with multiple daily injections (MDI) users (7.1vs 8.1 %, p < 0.01). In the CSII group, those who used CGM had a lower HbAc (7.1 vs 7.5 %,p = 0.02). Analyzing the data of the ambulatory glucose report, the CSII users had a lower glucose management indicator, (7.2 % vs 7.6 %, p < 0.01), more time in range (58.0 % vs 52.4 %;p < 0.01) and less time above range > 250 mg/dL (12.4 % vs 20.5 %;p < 0.01) than MDI users.

      Conclusions

      The median HbA1c was 7.3% very close to the recommended target. In Portugal, pediatric patients can access a CSII provided by the national health service and a CGM system due to an elevated reimbursement of their cost. This healthy policy allows us to achieve better goals without the risk of hypoglycemia.

      Abbreviations:

      ADA (American Diabetes Association), AGP (Ambulatory Glucose Profile), BGM (Blood glucose monitoring), BMI (Body mass index), CI (Confidence interval), CGM (Continuous glucose monitoring), rtCGM ((real-time CGM)), isCGM ((intermittently scanned CGM)), CSII (Continuous subcutaneous insulin infusion), CV (Glycemic variability), MI (Glucose management indicator), IQ (Interquartil range), ISPAD (International Society for Pediatric and Adolescent Diabetes), MDI (Multiple daily injections), OR (Odds ratios), PLGS (Predictive low glucose suspend system), SAP (Sensor-augmented pumps), SD (Standard deviation), T1D (Type 1 Diabetes Mellitus), TAR (Time above range), TBR (Time below range), TIR (Time in range), y (Years)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ogle G.D.
        • James S.
        • Dabelea D.
        • Pihoker C.
        • Svennson J.
        • Maniam J.
        • Klatman E.L.
        • Patterson C.C.
        Global estimates of incidence of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Atlas.
        Diabetes Res Clin. Pr. 2022; 183 (tenth ed.)109083https://doi.org/10.1016/j.diabres.2021.109083
      1. Vale S., Martins A.F., Cruz D., Freitas G. Programa Nacional para a Diabetes, Direção Geral da Saúde. Programa Nacional para a Diabetes 2019. Desafios e Estratégias. ISBN: 978–972-675–302-5.

        • Danne T.
        • Phillip M.
        • Buckingham B.A.
        • Jarosz-Chobot P.
        • Saboo B.
        • Urakami T.
        • Battelino T.
        • Hanas R.
        • Codner E.
        ISPAD Clinical Practice Consensus Guidelines 2018: insulin treatment in children and adolescents with diabetes.
        Pedia Diabetes. 2018; 19: 115-135https://doi.org/10.1111/pedi.12718
      2. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group.
        J. Pedia. 1994; 125: 177-188https://doi.org/10.1016/s0022-3476(94)70190-3
        • DiMeglio L.A.
        • Acerini C.L.
        • Codner E.
        • Craig M.E.
        • Hofer S.E.
        • Pillay K.
        • Maahs D.M.
        ISPAD clinical practice consensus guidelines 2018: glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes.
        Pedia Diabetes. 2018; 19: 105-114https://doi.org/10.1111/pedi.12737
        • American Diabetes Association Professional Practice Committee
        • Draznin B.
        • Aroda V.R.
        • Bakris G.
        • Benson G.
        • Brown F.M.
        • Freeman R.
        • Green J.
        • Huang E.
        • Isaacs D.
        • Kahan S.
        • Leon J.
        • Lyons S.K.
        • Peters A.L.
        • Prahalad P.
        • Reusch J.E.B.
        • Young-Hyman D.
        14. Children and adolescents: standards of medical care in diabetes-2022.
        Diabetes Care. 45. 2022: S208-S231https://doi.org/10.2337/dc22-S014
        • Beck R.W.
        • Bergenstal R.M.
        • Riddlesworth T.D.
        • Kollman C.
        • Li Z.
        • Brown A.S.
        • Close K.L.
        Validation of time in range as an outcome measure for diabetes clinical trials.
        Diabetes Care. 2019; 42: 400-405https://doi.org/10.2337/dc18-1444
        • Battelino T.
        • Danne T.
        • Bergenstal R.M.
        • Amiel S.A.
        • Beck R.
        • Biester T.
        • Bosi E.
        • Buckingham B.A.
        • Cefalu W.T.
        • Close K.L.
        • Cobelli C.
        • Dassau E.
        • DeVries J.H.
        • Donaghue K.C.
        • Dovc K.
        • Doyle 3rd, F.J.
        • Garg S.
        • Grunberger G.
        • Heller S.
        • Heinemann L.
        • Hirsch I.B.
        • Hovorka R.
        • Jia W.
        • Kordonouri O.
        • Kovatchev B.
        • Kowalski A.
        • Laffel L.
        • Levine B.
        • Mayorov A.
        • Mathieu C.
        • Murphy H.R.
        • Nimri R.
        • Nørgaard K.
        • Parkin C.G.
        • Renard E.
        • Rodbard D.
        • Saboo B.
        • Schatz D.
        • Stoner K.
        • Urakami T.
        • Weinzimer S.A.
        • Phillip M.
        Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range.
        Diabetes Care. 2019; 42: 1593-1603https://doi.org/10.2337/dci19-0028
      3. Araújo F.M.F. Despacho n.o 13277/2016. D.R. 2.a série. 213 (2016–11-07) 33021–33022 Determina, no âmbito do Programa Nacional para a Diabetes, o desenvolvimento da estratégia de Acesso a Tratamento com Dispositivos de Perfusão Subcutânea Contínua de Insulina (PSCI). Published online 2016:1–2.

      4. Libre F. Maria do Céu. Published online 2018:1–2.

        • Da Silva J.
        • Bosi E.
        • Jendle J.
        • Arrieta A.
        • Castaneda J.
        • Grossman B.
        • Cordero T.L.
        • Shin J.
        • Cohen O.
        Real-world performance of the minimed™ 670G system in Europe.
        Diabetes Obes. Metab. 2021; 23: 1942-1949https://doi.org/10.1111/dom.14424
        • Arrieta A.
        • Battelino T.
        • Scaramuzza A.E.
        • Da Silva J.
        • Castañeda J.
        • Cordero T.L.
        • Shin J.
        • Cohen O.
        Comparison of MiniMed 780G system performance in users aged younger and older than 15 years: evidence from 12 870 real-world users.
        Diabetes Obes. Metab. 2022; 24: 1370-1379https://doi.org/10.1111/dom.14714
        • Anderzén J.
        • Hermann J.M.
        • Samuelsson U.
        • Charalampopoulos D.
        • Svensson J.
        • Skrivarhaug T.
        • Fröhlich-Reiterer E.
        • Maahs D.M.
        • Akesson K.
        • Kapellen T.
        • Fritsch M.
        • Birkebaek N.H.
        • Drivvoll A.K.
        • Miller K.
        • Stephenson T.
        • Hofer S.E.
        • Fredheim S.
        • Kummernes S.J.
        • Foster N.
        • Amin R.
        • Hilgard D.
        • Rami-Merhar B.
        • Dahl-Jørgensen K.
        • Clements M.
        • Hanas R.
        • Holl R.W.
        • Warner J.T.
        International benchmarking in type 1 diabetes: large difference in childhood HbA1c between eight high-income countries but similar rise during adolescence-a quality registry study.
        Pedia Diabetes. 2020; 21: 621-627https://doi.org/10.1111/pedi.13014
        • Hong K.M.C.
        • Glick B.A.
        • Kamboj M.K.
        • Hoffman R.P.
        Glycemic control, depression, diabetes distress among adolescents with type 1 diabetes: effects of sex, race, insurance, and obesity.
        Acta Diabetol. 2021; 58: 1627-1635https://doi.org/10.1007/s00592-021-01768-w
        • Von Schnurbein J.
        • Boettcher C.
        • Brandt S.
        • Karges B.
        • Dunstheimer D.
        • Galler A.
        • et al.
        Sleep and glycemic control in adolescents with type 1 diabetes.
        Pedia Diabetes. 2018; 19: 143-149