Advertisement
Review Article| Volume 17, ISSUE 2, P129-136, April 2023

Download started.

Ok

HIIT is most effective than mict on glycemic control of older people with glucose metabolism impairments: A systematic review and metanalysis

Published:February 03, 2023DOI:https://doi.org/10.1016/j.pcd.2023.01.009

      Highlights

      • The MICT can improve the glucose metabolism in diabetic elderly.
      • The HIIT can improve the glucose metabolism in diabetic elderly.
      • The HIIT have an advantage over MICT on glucose metabolism in diabetic elderly.

      Abstract

      Introduction

      Physical exercise can improve glucose metabolism; however, the best type, volume, intensity, and frequency aren't knowledge. High-Intensity Interval Training (HIIT), an emergent exercise type implicated as a short time-efficient exercise to improve metabolic health, needs more investigation regarding the traditional Moderate-Intensity Continuous Training (MICT).

      Objective

      To identify the effects of MICT and HIIT on glycemic control of older people with glucose metabolism impairments.

      Methods

      Our research question was based on the PICO model and the systematic review of the literature according to the guidelines of the preferred report items for systematic reviews and PRISMA meta-analyses. An extensive search was conducted in the Web of Science, PubMed, and Scielo databases. Only English language papers were included. The keywords used were "HIIT and metabolism of the elderly", "HIIT and glucose metabolism of the elderly", and "MICT and metabolism of the elderly", which were crossed with the Boolean operators "AND" and "OR" or both according to the guidelines of the PRISMA.

      Results

      Seventy papers were retrieved in the initial search. After applying all inclusions and exclusion parameters, 63 articles were excluded. In the end, six papers were classified as eligible for this study. All data categorically demonstrates that both HIIT and MICT can improve glucose metabolism with a larger effect size towards the HIIT model after the meta-analysis, pointing to HIIT as the most effective strategy.

      Conclusion

      Both modalities can improve glucose metabolism in the elderly with a clear advantage for HIIT over MICT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Primary Care Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gillen J.B.
        • Martin B.J.
        • MacInnis M.J.
        • Skelly L.E.
        • Tarnopolsky M.A.
        • Gibala M.J.
        Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment.
        PLoS One. 2016; 11https://doi.org/10.1371/journal.pone.0154075
        • Ajmani R.S.
        • Fleg J.L.
        • Demehin a A.
        • Wright J.G.
        • O’Connor F.
        • Heim J.M.
        • Tarien E.
        • Rifkind J.M.
        Oxidative stress and hemorheological changes induced by acute treadmill exercise.
        Clin. Hemorheol. Microcirc. 2003; 28: 29-40
        • Lee H.T.
        • Oh H.O.
        • Han H.S.
        • Jin K.Y.
        • Roh H.L.
        Effect of mat pilates exercise on postural alignment and body composition of middle-aged women..
        J. Phys. Ther. Sci. 2016; 28: 1691-1695https://doi.org/10.1589/jpts.28.1691
        • Pereira G.B.
        • Prestes J.
        • Tibana R. a
        • Shiguemoto G.E.
        • Navalta J.
        • Perez S.E. a
        Acute resistance training affects cell surface markers for apoptosis and migration in CD4+ and CD8+ lymphocytes.
        Cell. Immunol. 2012; 279: 134-139https://doi.org/10.1016/j.cellimm.2012.11.002
        • Freidenreich D.J.
        • Volek J.S.
        Immune responses to resistance exercise.
        Exerc. Immunol. Rev. 2012; 18: 8-41
        • Belviranli M.
        • Okudan N.
        • Kabak B.
        The effects of acute high-intensity interval training on hematological parameters in sedentary subjects.
        Med. Sci. 2017; 5: 15https://doi.org/10.3390/medsci5030015
        • Gibala M.J.
        • Little J.P.
        • MacDonald M.J.
        • Hawley J.A.
        Physiological adaptations to low-volume, high-intensity interval training in health and disease.
        J. Physiol. 2012; 590: 1077-1084https://doi.org/10.1113/jphysiol.2011.224725
        • Swift D.L.
        • Lavie C.J.
        • Johannsen N.M.
        • Arena R.
        • Earnest C.P.
        • O^|^rsquo;Keefe J.H.
        • Milani R.V.
        • Blair S.N.
        • Church T.S.
        Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention.
        Circ. J. 2013; 77: 281-292https://doi.org/10.1253/circj.CJ-13-0007
        • Da Silva R.A.
        • Lunardello L.F.A.
        • De Oliveira G.L.
        • De Olivera T.A.P.
        • Valentim-Silva J.R.
        Ginástica geral pode melhorar a marcha e a capacidade cardiovascular de idosos.
        Rev. Bras. Med. Do Esport. 2016; 22: 306-310https://doi.org/10.1590/1517-869220162204147715
        • Egan B.
        • Zierath J.R.
        Exercise metabolism and the molecular regulation of skeletal muscle adaptation.
        Cell Metab. 2013; 17: 162-184https://doi.org/10.1016/j.cmet.2012.12.012
        • Nikander R.
        • Sievänen H.
        • Heinonen A.
        • Daly R.M.
        • Uusi-Rasi K.
        • Kannus P.
        Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life.
        BMC Med. 2010; 8https://doi.org/10.1186/1741-7015-8-47
        • Gibala M.J.
        • Little J.P.
        • van Essen M.
        • Wilkin G.P.
        • Burgomaster K.A.
        • Safdar A.
        • Raha S.
        • Tarnopolsky M.A.
        Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance.
        J. Physiol. 2006; 575: 901-911https://doi.org/10.1113/jphysiol.2006.112094
        • Louzada Júnior A.
        • Mota da Silva J.
        • Furtado da Silva V.
        • Clodoaldo Melo Castro A.
        • Eufrásio de Freitas R.
        • Braga Cavalcante J.
        • Maia dos Santos K.
        • Paula Azevedo Albuquerque A.
        • Paraguassú Brandão P.
        • Dias Bello N.
        • Maria Carmen Guimarães A.
        • Cesar Gurgel de Alencar Carvalho M.
        • Soares Pernambuco C.
        • Benício Ramos Lima E.
        • Ramos Coelho R.
        • Augusto de Souza Santos C.
        • Cleria Pereira Bezerra J.
        • Henrique Martin Dantas E.
        • Martins Silva R.P..
        • Nunes Sampaio A.
        • Valentim-Silva J.R..
        Multimodal HIIT is more efficient than moderate continuous training for management of body composition, lipid profile and glucose metabolism in the diabetic elderly.
        Int. J. Morphol. 2020; 38: 392-399https://doi.org/10.4067/S0717-95022020000200392
        • Cipryan L.
        • Tschakert G.
        • Hofmann P.
        Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes.
        J. Sport. Sci. Med. 2017;
        • Faelli E.
        • Ferrando V.
        • Bisio A.
        • Ferrando M.
        • La Torre A.
        • Panasci M.
        • Ruggeri P.
        Effects of two high-intensity interval training concepts in recreational runners.
        Int. J. Sports Med. 2019; https://doi.org/10.1055/a-0964-0155
        • Weston K.S.
        • Wisløff U.
        • Coombes J.S.
        High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis.
        Br. J. Sports Med. 2014; 48: 1227-1234https://doi.org/10.1136/bjsports-2013-092576
        • Wang Y.
        • Nie J.
        • Ferrari G.
        • Rey-Lopez J.P.
        • Rezende L.F.M.
        Association of physical activity intensity with mortality: a national cohort study of 403 681 US adults.
        JAMA Intern. Med. 2020; https://doi.org/10.1001/jamainternmed.2020.6331
        • Cassidy S.
        • Thoma C.
        • Houghton D.
        • Trenell M.I.
        High-intensity interval training: a review of its impact on glucose control and cardiometabolic health.
        Diabetologia. 2017; https://doi.org/10.1007/s00125-016-4106-1
        • Röhling M.
        • Herder C.
        • Stemper T.
        • Müssig K.
        Influence of acute and chronic exercise on glucose uptake.
        J. Diabetes Res. 2016; https://doi.org/10.1155/2016/2868652
        • Rafiei H.
        • Robinson E.
        • Barry J.
        • Jung M.E.
        • Little J.P.
        Short-term exercise training reduces glycaemic variability and lowers circulating endothelial microparticles in overweight and obese women at elevated risk of type 2 diabetes.
        Eur. J. Sport Sci. 2019; https://doi.org/10.1080/17461391.2019.1576772
        • da Costa R.S.L.
        • de Souza J.M.
        • de Souza Bussons L.F.
        • Carneiro R.M.A.
        • Silva J.R.V.
        Efeito do treinamento combinado de baixa intensidade e o controle da glicemia em idosos diabéticos tipo 2.
        Res., Soc. Dev. 2021; 10
        • O’Gorman D.J.
        • Karlsson H.K.R.
        • McQuaid S.
        • Yousif O.
        • Rahman Y.
        • Gasparro D.
        • Glund S.
        • Chibalin A.V.
        • Zierath J.R.
        • Nolan J.J.
        Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes.
        Diabetologia. 2006; https://doi.org/10.1007/s00125-006-0457-3
        • Richter E.A.
        • Hargreaves M.
        Exercise, GLUT4, and skeletal muscle glucose uptake.
        Physiol. Rev. 2013; https://doi.org/10.1152/physrev.00038.2012
        • Frøsig C.
        • Rose A.J.
        • Treebak J.T.
        • Kiens B.
        • Richter E.A.
        • Wojtaszewski J.F.P.
        Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160.
        Diabetes. 2007; https://doi.org/10.2337/db06-1698
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • Shamseer L.
        • Tetzlaff J.M.
        • Akl E.A.
        • Brennan S.E.
        • Chou R.
        • Glanville J.
        • Grimshaw J.M.
        • Hróbjartsson A.
        • Lalu M.M.
        • Li T.
        • Loder E.W.
        • Mayo-Wilson E.
        • McDonald S.
        • McGuinness L.A.
        • Stewart L.A.
        • Thomas J.
        • Tricco A.C.
        • Welch V.A.
        • Whiting P.
        • Moher D.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        Syst. Rev. 2021; 10: 1-11https://doi.org/10.1186/S13643-021-01626-4/FIGURES/1
      1. J. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, Cochrane handbook for systematic reviews of interventions, 2019. 〈https://books.google.com.br/books?hl=pt-BR&lr=&id=cTqyDwAAQBAJ&oi=fnd&pg=PR3&dq=Cochrane+Handbook+for+Systematic+Reviews+of+Interventions+version&ots=tvmHC5uEoi&sig=qQqQUSieXW3XmLbjsotZCT5cTaA〉 (accessed 4 January 2023).

      2. C. Santos, … C.P.-R. latino-americana, undefined 2007, The PICO strategy for the research question construction and evidence search, SciELO Bras. (n.d.). 〈https://www.scielo.br/j/rlae/a/CfKNnz8mvSqVjZ37Z77pFsy〉 (Accessed 4 January 2023).

        • Da Silva M.A.R.
        • Baptista L.C.
        • Neves R.S.
        • De França E.
        • Loureiro H.
        • Lira F.S.
        • Caperuto E.C.
        • Veríssimo M.T.
        • Martins R.A.
        The effects of concurrent training combining both resistance exercise and high-intensity interval training or moderate-intensity continuous training on metabolic syndrome.
        Front. Physiol. 2020; 11: 1-10https://doi.org/10.3389/fphys.2020.00572
        • Ramos J.S.
        • Dalleck L.C.
        • Keith C.E.
        • Fennell M.
        • Lee Z.
        • Drummond C.
        • Keating S.E.
        • Fassett R.G.
        • Coombes J.S.
        Optimizing the interaction of exercise volume and metformin to induce a clinically significant reduction in metabolic syndrome severity: a randomised trial.
        Int. J. Environ. Res. Public Health. 2020; https://doi.org/10.3390/ijerph17103695
        • Mendes R.
        • Sousa N.
        • Themudo-Barata J.L.
        • Reis V.M.
        High-intensity interval training versus moderate-intensity continuous training in middle-aged and older patients with type 2 diabetes: a randomized controlled crossover trial of the acute effects of treadmill walking on glycemic control.
        Int. J. Environ. Res. Public Health. 2019; https://doi.org/10.3390/ijerph16214163
        • Dun Y.
        • Thomas R.J.
        • Smith J.R.
        • Medina-Inojosa J.R.
        • Squires R.W.
        • Bonikowske A.R.
        • Huang H.
        • Liu S.
        • Olson T.P.
        High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction.
        Cardiovasc. Diabetol. 2019; https://doi.org/10.1186/s12933-019-0907-0
        • MacInnis M.J.
        • Gibala M.J.
        Physiological adaptations to interval training and the role of exercise intensity.
        J. Physiol. 2017; 595: 2915-2930https://doi.org/10.1113/JP273196
        • Xin Liu J.
        • Zhu L.
        • Jun Li P.
        • Li N.
        • Bing Xu Y.
        Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis.
        Aging Clin. Exp. Res. 2019; https://doi.org/10.1007/s40520-018-1012-z
        • De Nardi A.T.
        • Tolves T.
        • Lenzi T.L.
        • Signori L.U.
        • da Silva A.M.V.
        High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: A meta-analysis.
        Diabetes Res. Clin. Pract. 2018; https://doi.org/10.1016/j.diabres.2017.12.017
        • Bauer N.
        • Sperlich B.
        • Holmberg H.-C.
        • Engel F.A.
        Effects of high-intensity interval training in school on the physical performance and health of children and adolescents: a systematic review with meta-analysis.
        Sport. Med. - Open. 2022; 8https://doi.org/10.1186/s40798-022-00437-8
        • Mijwel S.
        • Backman M.
        • Bolam K.A.
        • Jervaeus A.
        • Sundberg C.J.
        • Margolin S.
        • Browall M.
        • Rundqvist H.
        • Wengström Y.
        Adding high-intensity interval training to conventional training modalities: optimizing health-related outcomes during chemotherapy for breast cancer: the OptiTrain randomized controlled trial.
        Breast Cancer Res. Treat. 2017; : 1-15https://doi.org/10.1007/s10549-017-4571-3
        • Gentil P.
        • Bottaro M.
        Influence of supervision ratio on muscle adaptations to resistance training in nontrained subjects.
        J. Strength Cond. Res. 2010; 24: 639-643
        • Braga J.C.
        • de Freitas R.E.
        • dos Santos K.M.
        • Pontes da Silva R.
        • Mota da Silva J.
        • Junior A.L.
        • de Oliveira G.L.
        • Oliveir T.A.P.
        • Pernambuco C.S.
        • Furtado da Silva V.
        • de Almeida Marinho D.
        • Valentim-Silva J.R.
        Twelve weeks of high-intense interval training enhance the neuromuscular and cardiorespiratory performance of elderly.
        Open Sports Sci. J. 2020; 13: 42-48https://doi.org/10.2174/1875399x02013010042
        • Sun S.
        • Zhang H.
        • Kong Z.
        • Shi Q.
        • Tong T.K.
        • Nie J.
        Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females.
        J. Sports Sci. 2019; https://doi.org/10.1080/02640414.2018.1554615
        • Fuhr U.
        • Hellmich M.
        Channeling the flood of meta-analyses.
        Eur. J. Clin. Pharm. 2015; 71: 645-647https://doi.org/10.1007/s00228-015-1838-7
        • Candow D.G.
        • Forbes S.C.
        • Chilibeck P.D.
        • Cornish S.M.
        • Antonio J.
        • Kreider R.B.
        Effectiveness of creatine supplementation on aging muscle and bone: focus on falls prevention and inflammation.
        J. Clin. Med. 2019; 8https://doi.org/10.3390/jcm8040488
        • Wu Z.-J.
        • Wang Z.-Y.
        • Gao H.-E.
        • Zhou X.-F.
        • LI F.H.
        The impact of interval training on cardiorespiratory fitness, body composition, physical fitness, and metabolic parameters in older adults: a systematic review and meta-analysis.
        Exp. Gerontol. 2020; : 1-31https://doi.org/10.21203/rs.2.23869/v1
        • American College of Sports Medicine
        American College of Sports Medicine position stand. Progression models in resistance training for healthy adults.
        Med. Sci. Sports Exerc. 2009; https://doi.org/10.1249/MSS.0b013e3181915670
        • Dun Y.
        • Smith J.R.
        • Medina-Inojosa J.R.
        • MacGillivary M.C.
        • Thomas R.J.
        • Liu S.
        • Cai Y.
        • Olson T.P.
        Effect of high-intensity interval training on total and abdominal fat mass in outpatient cardiac rehabilitation patients with myocardial infarction.
        J. Am. Coll. Cardiol. 2019; 73: 13https://doi.org/10.1016/s0735-1097(19)33775-1