Highlights
- •It investigated the dose-response relationship between F&V and T2D in rural China.
- •Individuals should be encouraged to consume ≥ 260 g of fruit per day.
- •Individuals who intake high fruit plus do not smoke or drink perhaps profit the most.
- •Total F&V consumption of 600–1000 g/day should be encouraged to promote good health.
Abstract
Aims
To explore the dose-response relationship of fruit and vegetable (F&V) intake and
type 2 diabetes (T2D) risk in rural China.
Methods
A total of 38798 adults were recruited from the Henan Rural Cohort Study. F&V intake
was assessed by a validated food-frequency questionnaire. Logistic regression and
restricted cubic splines analysis were conducted to calculate the odds ratio (OR)
for T2D relative to F&V intake and investigate the dose-response relationship.
Results
Higher intake of fruit or combined F&V was in connection with a lower risk of T2D,
after adjusting for multiple confounders. After analyzing the dose-response relationship,
we found that the odds of T2D decreased significantly with fruit consumption ≥ 260 g/day
or F&V intake between 600 and 1000 g/day. And in subgroup analysis, we found that
the negative correlation between fruit consumption and T2D was more pronounced in
non-current smokers and non-current drinkers.
Conclusions
High intake of fruit alone or combined F&V is related to a reduced risk of T2D in
rural China. Fruit intake ≥ 260 g/day and total F&V consumption of 600–1000 g/day
should be encouraged to promote good health.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Primary Care DiabetesAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.Lancet. 2016; 390: 1211-1259https://doi.org/10.1016/s0140-6736(17)32154-2
- Prevalence and control of diabetes in Chinese adults.JAMA. 2013; 310: 948-959https://doi.org/10.1001/jama.2013.168118
- Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study.BMJ. 2020; 369m997https://doi.org/10.1136/bmj.m997
- IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res Clin. Pr. 2018; 138: 271-281https://doi.org/10.1016/j.diabres.2018.02.023
- Prevalence, awareness, treatment and control of diabetes mellitus among middle-aged and elderly people in a rural Chinese population: A cross-sectional study.PLoS One. 2018; 13e0198343https://doi.org/10.1371/journal.pone.0198343
- Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study.Diabetes Care. 1997; 20: 537-544https://doi.org/10.2337/diacare.20.4.537
- Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.N. Engl. J. Med. 2002; 346: 393-403https://doi.org/10.1056/NEJMoa012512
- Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus.Cochrane Database Syst. Rev. 2017; 12: Cd003054https://doi.org/10.1002/14651858.CD003054.pub4
- Are the Chinese Moving toward a Healthy Diet? Evidence from Macro Data from 1961 to 2017.Int J. Environ. Res Public Health. 2020; 17: 5294https://doi.org/10.3390/ijerph17155294
- Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies.J. Acad. Nutr. Diet. 2018; 118e111https://doi.org/10.1016/j.jand.2017.08.024
- Rapid income growth adversely affects diet quality in China--particularly for the poor!.Soc. Sci. Med. 2004; 59: 1505-1515https://doi.org/10.1016/j.socscimed.2004.01.021
- China in the period of transition from scarcity and extensive undernutrition to emerging nutrition-related non-communicable diseases.Obes. Rev. 2014; 15 (1949-1992): 8-15https://doi.org/10.1111/obr.12122
- Understanding dietary and staple food transitions in China from multiple scales.PLoS One. 2018; 13e0195775https://doi.org/10.1371/journal.pone.0195775
- Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies.BMJ Nutr. Prev. Health. 2021; 4: 519-531https://doi.org/10.1136/bmjnph-2020-000218
- Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries.Bmj. 2020; 370: m2194https://doi.org/10.1136/bmj.m2194
- Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies.BMJ Open. 2014; 4e005497https://doi.org/10.1136/bmjopen-2014-005497
- Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women.J. Nutr. 2008; 138: 574-580https://doi.org/10.1093/jn/138.3.574
- Fresh vegetable intake and prevalence of diabetes in a Chinese population in Qingdao.Diabetes Res Clin. Pr. 2011; 92: 137-142https://doi.org/10.1016/j.diabres.2010.12.034
- Cohort Profile: The Henan Rural Cohort: a prospective study of chronic non-communicable diseases.Int J. Epidemiol. 2019; 48 (1756-1756j)https://doi.org/10.1093/ije/dyz039
- Reproducibility and validity of an FFQ in the Henan Rural Cohort Study.Public Health Nutr. 2020; 23: 34-40https://doi.org/10.1017/s1368980019002416
- Diagnosis and classification of diabetes mellitus: highlights from the American Diabetes Association.J. Reprod. Med. 1997; 42: 585-586
- International physical activity questionnaire: 12-country reliability and validity.Med Sci. Sports Exerc. 2003; 35: 1381-1395https://doi.org/10.1249/01.Mss.0000078924.61453.Fb
- China Food Composition Table, Institute of Nutrition and Food Safety of the Chinese Center for Disease Control and Prevention.China Food Composition Standard Edition. China, Peking University Medical Press,, Beijing2018
- Sleep quality as a potential mediator between psychological distress and diabetes quality of life in veterans with type 2 diabetes.J. Clin. Psychol. 2013; 69: 1121-1131https://doi.org/10.1002/jclp.21866
- Intake of fruit, vegetables, and fruit juices and risk of diabetes in women.Diabetes Care. 2008; 31: 1311-1317https://doi.org/10.2337/dc08-0080
- New Chinese dietary guidelines: healthy eating patterns and food-based dietary recommendations.Asia Pac. J. Clin. Nutr. 2018; 27: 908-913https://doi.org/10.6133/apjcn.072018.03
- Analysis of consumer market of fruit of Henan area dweller.Fruit. Growers’ Friend. 2021; : 38-41https://doi.org/10.3969/j.issn.1671-7759.2021.02.018
- International tables of glycemic index and glycemic load values: 2008.Diabetes Care. 2008; 31: 2281-2283https://doi.org/10.2337/dc08-1239
- Type 2 diabetes and glycemic response to grapes or grape products.J. Nutr. 2009; 139: 1794s-1800shttps://doi.org/10.3945/jn.109.107631
- The relation of low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes.Diabetologia. 2011; 54: 271-279https://doi.org/10.1007/s00125-010-1927-1
- The association between a biomarker score for fruit and vegetable intake and incident type 2 diabetes: the EPIC-Norfolk study.Eur. J. Clin. Nutr. 2015; 69: 449-454https://doi.org/10.1038/ejcn.2014.246
- Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES.Eur. J. Clin. Nutr. 2017; 71: 83-91https://doi.org/10.1038/ejcn.2016.143
- Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: results from a 20-year long prospective cohort study in Swedish men and women.Eur. J. Nutr. 2022; https://doi.org/10.1007/s00394-022-02871-6
- A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes.Diabetes Care. 2012; 35: 1293-1300https://doi.org/10.2337/dc11-2388
- Analysis on regional differences of vegetable comparative advantage in Henan Province.Vegetables. 2021; : 33-41
- Smoking and the risk of type 2 diabetes.Transl. Res. 2017; 184: 101-107https://doi.org/10.1016/j.trsl.2017.02.004
- Alcohol consumption and diabetes risk in a Chinese population: a Mendelian randomization analysis.Addiction. 2019; 114: 436-449https://doi.org/10.1111/add.14475
- Nutrition education effective in increasing fruit and vegetable consumption among overweight and obese adults.Appetite. 2016; 100: 94-101https://doi.org/10.1016/j.appet.2016.02.002
- Obesity and type 2 diabetes.Endocrinol. Metab. Clin. North Am. 2003; 32: 805-822https://doi.org/10.1016/s0889-8529(03)00071-9
- Optimal diets for prevention of coronary heart disease.Jama. 2002; 288: 2569-2578https://doi.org/10.1001/jama.288.20.2569
- The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review.J. Food Biochem. 2020; e13414https://doi.org/10.1111/jfbc.13414
- Dietary polyphenols as potential nutraceuticals in management of diabetes: a review.J. Diabetes Metab. Disord. 2013; 12: 43https://doi.org/10.1186/2251-6581-12-43
- Diabetes mellitus and inflammation.Curr. Diab. Rep. 2013; 13: 435-444https://doi.org/10.1007/s11892-013-0375-y
- Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies.Eur. J. Epidemiol. 2014; 29: 79-88https://doi.org/10.1007/s10654-013-9876-x
- The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease.Cell Host Microbe. 2018; 23: 705-715https://doi.org/10.1016/j.chom.2018.05.012
- Whole fruits and fruit fiber emerging health effects.Nutrients. 2018; : 10https://doi.org/10.3390/nu10121833
- Role of gut microbiota in type 2 diabetes pathophysiology.EBioMedicine. 2020; 51102590https://doi.org/10.1016/j.ebiom.2019.11.051
- Nature's bountiful gift to humankind: Vegetables & fruits & their role in cardiovascular disease & diabetes.Indian J. Med Res. 2018; 148: 569-595https://doi.org/10.4103/ijmr.IJMR_1780_18
- Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies.Diabetes Care. 2011; 34: 2116-2122https://doi.org/10.2337/dc11-0518
Article info
Publication history
Published online: February 02, 2023
Accepted:
January 31,
2023
Received in revised form:
December 26,
2022
Received:
August 22,
2022
Identification
Copyright
© 2023 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.